# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3370 | 0 | 1.0000 | Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance. | 2013 | 23247295 |
| 3371 | 1 | 0.9999 | Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Drinking water comprises a complex microbiota, in part shaped by the disinfection and distribution systems. Gram-negative bacteria, mainly members of the phylum Proteobacteria, represent the most frequent bacteria in drinking water, and their ubiquity and physiological versatility raises questions about possible implications in human health. The first step to address this concern is the identification and characterization of such bacteria that is the first objective of this study, aiming at identifying ubiquitous or persistent Gram-negative bacteria, Proteobacteria or members of other phyla, isolated from tap water or from its source. >1000 bacterial isolates were characterized and identified, and a selected group (n=68) was further analyzed for the minimum inhibitory concentrations (MIC) to antibiotics (amoxicillin and gentamicin) and metals (copper and arsenite). Total DNA extracts of tap water were examined for the presence of putatively acquired antibiotic resistance or related genes (intI1, bla(TEM), qnrS and sul1). The ubiquitous tap water genera comprised Proteobacteria of the class Alpha- (Blastomonas, Brevundimonas, Methylobacterium, Sphingobium, Sphingomonas), Beta- (Acidovorax, Ralstonia) and Gamma- (Acinetobacter and Pseudomonas). Persistent species were members of genera such as Aeromonas, Enterobacter or Dechloromonas. Ralstonia spp. showed the highest MIC values to gentamicin and Acinetobacter spp. to arsenite. The genes intI1, bla(TEM) or sul1 were detected, at densities lower than 2.3×10(5)copies/L, 2.4×10(4)copies/L and 4.6×10(2)copies/L, respectively, in most tap water samples. The presence of some bacterial groups, in particular of Beta- or Gammaproteobacteria (e.g. Ralstonia, Acinetobacter, Pseudomonas) in drinking water may deserve attention given their potential as reservoirs or carriers of resistance or as opportunistic pathogens. | 2017 | 28238372 |
| 3391 | 2 | 0.9999 | Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance. | 2010 | 20629799 |
| 3394 | 3 | 0.9999 | Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles. | 2020 | 31930390 |
| 3423 | 4 | 0.9999 | bla(TEM) and vanA as indicator genes of antibiotic resistance contamination in a hospital-urban wastewater treatment plant system. Four indicator genes were monitored by quantitative PCR in hospital effluent (HE) and in the raw and treated wastewater of the municipal wastewater treatment plant receiving the hospital discharge. The indicator genes were the class 1 integrase gene intI1, to assess the capacity of bacteria to be involved in horizontal gene transfer processes; bla(TEM), one of the most widespread antibiotic resistance genes in the environment, associated with Enterobacteriaceae; vanA, an antibiotic resistance gene uncommon in the environment and frequent in clinical isolates; and marA, part of a locus related to the stress response in Enterobacteriaceae. Variation in the abundance of these genes was analysed as a function of the type of water, and possible correlations with cultivable bacteria, antimicrobial residue concentrations, and bacterial community composition and structure were analysed. HE was confirmed as an important source of bla(TEM) and vanA genes, and wastewater treatment showed a limited capacity to remove these resistance genes. The genes bla(TEM) and vanA presented the strongest correlations with culturable bacteria, antimicrobial residues and some bacterial populations, representing interesting candidates as indicator genes to monitor resistance in environmental samples. The intI1 gene was the most abundant in all samples, demonstrating that wastewater bacterial populations hold a high potential for gene acquisition. | 2014 | 27873693 |
| 3399 | 5 | 0.9999 | Antibiotic-resistance and virulence genes in Enterococcus isolated from tropical recreational waters. The prevalence of enterococci harboring tetracycline- and vancomycin-resistance genes, as well as the enterococcal surface protein (esp) has mostly been determined in clinical settings, but their prevalence in tropical recreational waters remains largely unknown. The present study determined the prevalence of tetM (tetracycline-resistance), vanA and vanB (vancomycin-resistance) in the bacterial and viral fractions, enterococci and their induced phages isolated from tropical recreational marine and fresh waters, dry and wet sands. Since lysogenic phages can act as vectors for antibiotic-resistance and virulence factors, the prevalence of the mentioned genes, as well as that of an integrase-encoding gene (int) specific for Enterococcus faecalis phages was determined. Up to 60 and 54% of the bacterial fractions and enterococci, respectively, harbored at least one of the tested genes suggesting that bacteria in tropical environments may be reservoirs of antibiotic-resistance and virulence genes. int was detected in the viral fractions and in one Enterococcus isolate after induction. This study presents the opportunity to determine if the presence of bacteria harboring antibiotic-resistance and virulence genes in tropical recreational waters represents a threat to public health. | 2013 | 23981868 |
| 3409 | 6 | 0.9999 | Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment. | 2011 | 21390233 |
| 3373 | 7 | 0.9999 | Evidence of Increased Antibiotic Resistance in Phylogenetically-Diverse Aeromonas Isolates from Semi-Intensive Fish Ponds Treated with Antibiotics. The genus Aeromonas is ubiquitous in aquatic environments encompassing a broad range of fish and human pathogens. Aeromonas strains are known for their enhanced capacity to acquire and exchange antibiotic resistance genes and therefore, are frequently targeted as indicator bacteria for monitoring antimicrobial resistance in aquatic environments. This study evaluated temporal trends in Aeromonas diversity and antibiotic resistance in two adjacent semi-intensive aquaculture facilities to ascertain the effects of antibiotic treatment on antimicrobial resistance. In the first facility, sulfadiazine-trimethoprim was added prophylactically to fingerling stocks and water column-associated Aeromonas were monitored periodically over an 11-month fish fattening cycle to assess temporal dynamics in taxonomy and antibiotic resistance. In the second facility, Aeromonas were isolated from fish skin ulcers sampled over a 3-year period and from pond water samples to assess associations between pathogenic strains to those in the water column. A total of 1200 Aeromonas isolates were initially screened for sulfadiazine resistance and further screened against five additional antimicrobials. In both facilities, strong correlations were observed between sulfadiazine resistance and trimethoprim and tetracycline resistances, whereas correlations between sulfadiazine resistance and ceftriaxone, gentamicin, and chloramphenicol resistances were low. Multidrug resistant strains as well as sul1, tetA, and intI1 gene-harboring strains were significantly higher in profiles sampled during the fish cycle than those isolated prior to stocking and these genes were extremely abundant in the pathogenic strains. Five phylogenetically distinct Aeromonas clusters were identified using partial rpoD gene sequence analysis. Interestingly, prior to fingerling stocking the diversity of water column strains was high, and representatives from all five clusters were identified, including an A. salmonicida cluster that harbored all characterized fish skin ulcer samples. Subsequent to stocking, diversity was much lower and most water column isolates in both facilities segregated into an A. veronii-associated cluster. This study demonstrated a strong correlation between aquaculture, Aeromonas diversity and antibiotic resistance. It provides strong evidence for linkage between prophylactic and systemic use of antibiotics in aquaculture and the propagation of antibiotic resistance. | 2016 | 27965628 |
| 5289 | 8 | 0.9999 | Examination of the Aerobic Microflora of Swine Feces and Stored Swine Manure. Understanding antibiotic resistance in agricultural ecosystems is critical for determining the effects of subtherapeutic and therapeutic uses of antibiotics for domestic animals. This study was conducted to ascertain the relative levels of antibiotic resistance in the aerobic bacterial population to tetracycline, tylosin, and erythromycin. Swine feces and manure samples were plated onto various agar media with and without antibiotics and incubated at 37°C. Colonies were counted daily. Randomly selected colonies were isolated and characterized by 16S rRNA sequence analyses and additional antibiotic resistance and biochemical analyses. Colonies were recovered at levels of 10 to 10 CFU mL for swine slurry and 10 to 10 CFU g swine feces, approximately 100-fold lower than numbers obtained under anaerobic conditions. Addition of antibiotics to the media resulted in counts that were 60 to 80% of those in control media without added antibiotics. Polymerase chain reaction analyses for antibiotic resistance genes demonstrated the presence of a number of different resistance genes from the isolates. The recoverable aerobic microflora of swine feces and manure contain high percentages of antibiotic-resistant bacteria, which include both known and novel genera and species, and a variety of antibiotic resistance genes. Further analyses of these and additional isolates should provide additional information on these organisms as potential reservoirs of antibiotic resistance genes in these ecosystems. | 2016 | 27065407 |
| 3408 | 9 | 0.9999 | The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. The widespread and indiscriminate use of antibiotics has led to the development of antibiotic resistance in pathogenic, as well as commensal, microorganisms. Resistance genes may be horizontally or vertically transferred between bacterial communities in the environment. The recipient bacterial communities may then act as a reservoir of these resistance genes. In this study, we report the incidence of antibiotic resistance in enteric bacteria isolated from the Mhlathuze River and the distribution of genetic elements that may be responsible for the observed antibiotic resistance. The resistance of the enteric bacteria isolated over a period of one year showed that resistance to the older classes of antibiotics was high (94.7% resistance to one antibiotic and 80.8% resistance to two antibiotics). Furthermore, antibiotic resistance data of the environmental isolates showed a strong correlation (r = 0.97) with data obtained from diarrhoea patients. PCR based methods demonstrated that class 1 integrons were present in >50% of the environmental bacterial isolates that were resistant to multiple antibiotics. This class of integrons is capable of transferring genes responsible for resistance to beta-lactam, aminoglycoside, sulfonamide and quaternary ammonium antimicrobial agents. Conjugate plasmids were also isolated, but from a small percentage of isolates. This study showed that the Mhlathuze River (a) is a medium for the spread of bacterial antibiotic resistance genes, (b) acts as a reservoir for these genes and (c) due to socio-economic pressures, may play a role in the development and evolution of these genes along this river system. | 2004 | 15318485 |
| 3352 | 10 | 0.9999 | Analysis of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An, Vietnam). In Vietnam, intensive shrimp farms heavily rely on a wide variety of antibiotics (ABs) to treat animals or prevent disease outbreak. Potential for the emergence of multi-resistant bacteria is high, with the concomitant contamination of adjacent natural aquatic habitats used for irrigation and drinking water, impairing in turn human health system. In the present study, quantification of AB multi-resistant bacteria was carried out in water and sediment samples from effluent channels connecting a shrimp farming area to the Vam Co River (Long An Province, Vietnam). Bacterial strains, e.g. Klebsiella pneumoniae and Aeromonas hydrophila, showing multi-resistance traits were isolated. Molecular biology analysis showed that these strains possessed from four to seven different AB resistance genes (ARGs) (e.g. sul1, sul2, qnrA, ermB, tetA, aac(6)lb, dfrA1, dfr12, dfrA5), conferring multidrug resistance capacity. Sequencing of plasmids present within these multi-resistant strains led to the identification of a total of forty-one resistance genes, targeting nine AB groups. qPCR analysis on the sul2 gene revealed the presence of high copy numbers in the effluent channel connecting to the Vam Co River. The results of the present study clearly indicated that multi-resistant bacteria present in intensive shrimp cultures may disseminate in the natural environment. This study offered a first insight in the impact of plasmid-born ARGs and the related pathogenic bacteria that could emerged due to inappropriate antibiotic utilization in South Vietnam. | 2018 | 29524670 |
| 3381 | 11 | 0.9999 | Comparison of the Antibiotic Resistance of Escherichia coli Populations from Water and Biofilm in River Environments. Antibiotic-resistant, facultative pathogenic bacteria are commonly found in surface water; however, the factors influencing the spread and stabilization of antibiotic resistance in this habitat, particularly the role of biofilms, are not fully understood. The extent to which bacterial populations in biofilms or sediments exacerbate the problem for specific antibiotic classes or more broadly remains unanswered. In this study, we investigated the differences between the bacterial populations found in the surface water and sediment/biofilm of the Mur River and the Drava River in Austria. Samples of Escherichia coli were collected from both the water and sediment at two locations per river: upstream and downstream of urban areas that included a sewage treatment plant. The isolates were subjected to antimicrobial susceptibility testing against 21 antibiotics belonging to seven distinct classes. Additionally, isolates exhibiting either extended-spectrum beta-lactamase (ESBL) or carbapenemase phenotypes were further analyzed for specific antimicrobial resistance genes. E. coli isolates collected from all locations exhibited resistance to at least one of the tested antibiotics; on average, isolates from the Mur and Drava rivers showed 25.85% and 23.66% resistance, respectively. The most prevalent resistance observed was to ampicillin, amoxicillin-clavulanic acid, tetracycline, and nalidixic acid. Surprisingly, there was a similar proportion of resistant bacteria observed in both open water and sediment samples. The difference in resistance levels between the samples collected upstream and downstream of the cities was minimal. Out of all 831 isolates examined, 13 were identified as carrying ESBL genes, with 1 of these isolates also containing the gene for the KPC-2 carbapenemase. There were no significant differences between the biofilm (sediment) and open water samples in the occurrence of antibiotic resistance. For the E. coli populations in the examined rivers, the different factors in water and the sediment do not appear to influence the stability of resistance. No significant differences in antimicrobial resistance were observed between the bacterial populations collected from the biofilm (sediment) and open-water samples in either river. The different factors in water and the sediment do not appear to influence the stability of resistance. The minimal differences observed upstream and downstream of the cities could indicate that the river population already exhibits generalized resistance. | 2024 | 38392909 |
| 3375 | 12 | 0.9999 | Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes. | 2018 | 29235021 |
| 3360 | 13 | 0.9999 | Gentamicin resistance genes in environmental bacteria: prevalence and transfer. A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gm(r)) genes in different non-clinical environments has been performed. We were interested to find out whether Gm(r) genes described from clinical isolates can be detected in different environmental habitats and whether hot spots can be identified. Furthermore, this study aimed to evaluate the impact of selective pressure on the abundance and mobility of resistance genes. The study included samples from soils, rhizospheres, piggery manure, faeces from cattle, laying and broiler chickens, municipal and hospital sewage water, and coastal water. Six clusters of genes coding for Gm-modifying enzymes (aac(3)-I, aac(3)-II/VI, aac(3)-III/IV, aac(6')-II/Ib, ant(2'')-I, aph(2'')-I) were identified based on a database comparison and primer systems for each gene cluster were developed. Gm-resistant bacteria isolated from the different environments had a different taxonomic composition. In only 34 of 207 isolates, mainly originating from sewage, faeces and coastal water polluted with wastewater, were known Gm(r) genes corresponding to five of the six clusters detected. The strains belonged to genera in which the genes had previously been detected (Enterobacteriaceae, Pseudomonas, Acinetobacter) but also to phylogenetically distant bacteria, such as members of the CFB group, alpha- and beta-Proteobacteria. Gm(r) genes located on mobile genetic elements (MGE) could be captured in exogenous isolations into recipients belonging to alpha-, beta- and gamma-Proteobacteria from all environments except for soil. A high proportion of the MGE, conferring Gm resistance isolated from sewage, were identified as IncPbeta plasmids. Molecular detection of Gm(r) genes, and broad host range plasmid-specific sequences (IncP-1, IncN, IncW and IncQ) in environmental DNA indicated a habitat-specific dissemination. A high abundance and diversity of Gm(r) genes could be shown for samples from faeces (broilers, layers, cattle), from sewage, from seawater, collected close to a wastewater outflow, and from piggery manure. In the latter samples all six clusters of Gm(r) genes could be detected. The different kinds of selective pressure studied here seemed to enhance the abundance of MGE, while an effect on Gm(r) genes was not obvious. | 2002 | 19709289 |
| 1933 | 14 | 0.9999 | Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination. | 2022 | 36139170 |
| 3140 | 15 | 0.9999 | Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and bla(TEM-157) and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain. | 2022 | 36371907 |
| 1942 | 16 | 0.9999 | Occurrence of antibiotic resistance among Gram negative bacteria isolated from effluents of fish processing plants in and around Mangalore. The presence of antibiotic-resistant bacteria in seafood not only poses a serious health risk for the consumers but also contributes to the spread of these antibiotic-resistant bacteria in the natural environments through the effluents discharged from the fish processing plants. The aims of this study were to isolate Gram-negative bacteria from the effluents of fish processing plants in and around Mangalore, India and to profile their antibiotic resistance pattern. Maximum resistance was seen for ampicillin (40.78%) followed by tetracycline (40.22%) and nitrofurantoin (29.05%). Further, the detection of genes that contribute to antibiotic resistance revealed the presence of sulfonamide resistance genes (sul1 and sul2) and extended spectrum β-lactamase genes (bla (CTX-M), bla (TEM)) in a few isolates. The presence of such bacteria in fish processing effluents is a matter of great concern because they can contribute significantly to the antibiotic resistance in the natural environment. It is imperative that seafood processing plants follow the safe disposal of effluents in order to reduce or eliminate the antibiotic resistance menace. | 2020 | 31112036 |
| 3357 | 17 | 0.9999 | Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant. | 2009 | 19389756 |
| 3361 | 18 | 0.9999 | The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. AIM: Previous analysis of tet39 suggests it may be present in other bacterial species. Hence, we investigated the host range of tet39 among bacterial from a poultry waste polluted river in Southwestern Nigeria. METHODS AND RESULTS: Thirteen resistant bacterial isolated from the water and sediment of the polluted river was investigated for the presence of tetracycline resistance genes tetA, tetB, tetC, tet39 and the transposon integrase gene of the Tn916/1545 family by PCR. While tetA, tetB, tetC and integrase genes cannot be detected in any of the organisms, tet39 was detected in eight of the tested organisms including three Gram-positive species. Sequence analysis showed the genes have high sequence identities (> or =99%) with tet39 of Acinetobacter sp. LUH5605, the first and only bacterial genus from which the gene has been reported to date. This is a novel observation. CONCLUSIONS: This study shows that apart from Acinetobacter, tet39 is present in other bacterial species tested in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study adds to available information on the occurrence and distribution of tet39 among environmental bacteria and suggests that the gene has a broader host range than previously reported. | 2009 | 19196439 |
| 3317 | 19 | 0.9999 | Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Antibiotic-resistant Enterobacteriaceae and non-lactose fermenting Gram-negative bacteria are a major cause of nosocomial infections. Antibiotic misuse has fueled the worldwide spread of resistant bacteria and the genes responsible for antibiotic resistance (ARGs). There is evidence that ARGs are ubiquitous in non-clinical environments, especially those affected by anthropogenic activity. However, the emergence and primary sources of ARGs in the environment of countries with strict regulations for antibiotics usage are not fully explored. The aim of the present study was to evaluate the repertoire of ARGs of culturable Gram-negative bacteria from directionally connected sites from the hospital to the wastewater treatment plant (WWTP), and downstream aquatic environments in central Sweden. The ARGs were detected from genomic DNA isolated from a population of selectively cultured coliform and Gram-negative bacteria using qPCR. The results show that hospital wastewater was a reservoir of several class B β-lactamase genes such as bla (IMP-1) , bla (IMP-2), and bla (OXA-23), however, most of these genes were not observed in downstream locations. Moreover, β-lactamase genes such as bla (OXA-48), bla (CTX-M-8), and bla (SFC-1), bla (V IM-1), and bla (V IM-13) were detected in downstream river water but not in the WWTP. The results indicate that the WWTP and hospital wastewaters were reservoirs of most ARGs and contribute to the diversity of ARGs in associated natural environments. However, this study suggests that other factors may also have minor contributions to the prevalence and diversity of ARGs in natural environments. | 2019 | 31019498 |