Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
335901.0000Marine bacteria harbor the sulfonamide resistance gene sul4 without mobile genetic elements. Marine bacteria are possible reservoirs of antibiotic-resistance genes (ARGs) originating not only from clinical and terrestrial hot spots but also from the marine environment. We report here for the first time a higher rate of the sulfonamide-resistance gene sul4 in marine bacterial isolates compared with other sul genes. Among four sulfonamide-resistance genes (sul1, sul2, sul3, and sul4), sul4 was most abundant (45%) in 74 sulfonamide-resistant marine isolates by PCR screening. The order of abundance was sul4 (33 isolates) >sul2 (6 isolates) >sul3 (5 isolates) >sul1 (1 isolate). Whole-genome sequencing of 23 isolates of sul4-expressing α- and γ-proteobacteria and bacilli revealed that sul4 was not accompanied by known mobile genetic elements. This suggests that sul4 in these marine isolates is clonally transferred and not horizontally transferable. Folate metabolism genes formed a cluster with sul4, suggesting that the cluster area plays a role in folate metabolism, at which sul4 functions as a dihydropteroate synthase. Thus, sul4 might be expressed in marine species and function in folate synthesis, but it is not a transferable ARG.202337779713
336110.9998The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. AIM: Previous analysis of tet39 suggests it may be present in other bacterial species. Hence, we investigated the host range of tet39 among bacterial from a poultry waste polluted river in Southwestern Nigeria. METHODS AND RESULTS: Thirteen resistant bacterial isolated from the water and sediment of the polluted river was investigated for the presence of tetracycline resistance genes tetA, tetB, tetC, tet39 and the transposon integrase gene of the Tn916/1545 family by PCR. While tetA, tetB, tetC and integrase genes cannot be detected in any of the organisms, tet39 was detected in eight of the tested organisms including three Gram-positive species. Sequence analysis showed the genes have high sequence identities (> or =99%) with tet39 of Acinetobacter sp. LUH5605, the first and only bacterial genus from which the gene has been reported to date. This is a novel observation. CONCLUSIONS: This study shows that apart from Acinetobacter, tet39 is present in other bacterial species tested in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study adds to available information on the occurrence and distribution of tet39 among environmental bacteria and suggests that the gene has a broader host range than previously reported.200919196439
335720.9998Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, beta-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.200919389756
336030.9998Gentamicin resistance genes in environmental bacteria: prevalence and transfer. A comprehensive multiphasic survey of the prevalence and transfer of gentamicin resistance (Gm(r)) genes in different non-clinical environments has been performed. We were interested to find out whether Gm(r) genes described from clinical isolates can be detected in different environmental habitats and whether hot spots can be identified. Furthermore, this study aimed to evaluate the impact of selective pressure on the abundance and mobility of resistance genes. The study included samples from soils, rhizospheres, piggery manure, faeces from cattle, laying and broiler chickens, municipal and hospital sewage water, and coastal water. Six clusters of genes coding for Gm-modifying enzymes (aac(3)-I, aac(3)-II/VI, aac(3)-III/IV, aac(6')-II/Ib, ant(2'')-I, aph(2'')-I) were identified based on a database comparison and primer systems for each gene cluster were developed. Gm-resistant bacteria isolated from the different environments had a different taxonomic composition. In only 34 of 207 isolates, mainly originating from sewage, faeces and coastal water polluted with wastewater, were known Gm(r) genes corresponding to five of the six clusters detected. The strains belonged to genera in which the genes had previously been detected (Enterobacteriaceae, Pseudomonas, Acinetobacter) but also to phylogenetically distant bacteria, such as members of the CFB group, alpha- and beta-Proteobacteria. Gm(r) genes located on mobile genetic elements (MGE) could be captured in exogenous isolations into recipients belonging to alpha-, beta- and gamma-Proteobacteria from all environments except for soil. A high proportion of the MGE, conferring Gm resistance isolated from sewage, were identified as IncPbeta plasmids. Molecular detection of Gm(r) genes, and broad host range plasmid-specific sequences (IncP-1, IncN, IncW and IncQ) in environmental DNA indicated a habitat-specific dissemination. A high abundance and diversity of Gm(r) genes could be shown for samples from faeces (broilers, layers, cattle), from sewage, from seawater, collected close to a wastewater outflow, and from piggery manure. In the latter samples all six clusters of Gm(r) genes could be detected. The different kinds of selective pressure studied here seemed to enhance the abundance of MGE, while an effect on Gm(r) genes was not obvious.200219709289
314040.9998Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and bla(TEM-157) and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.202236371907
337050.9998Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process. Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.201323247295
370360.9997Antibiotic resistance patterns of metal-tolerant bacteria isolated from an estuary. Estuarine bacteria isolated on metal-containing media were also found to be antibiotic resistant; ampicillin and chloramphenicol were the antibiotics to which resistance was most common. Patterns of antibiotic resistance were found associated with a variety of taxa.1977921251
282970.9997Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. The prevalence of selected streptomycin (Sm)-resistance genes, i.e. aph (3''), aph (6)-1d, aph (6)-1c, ant (3'') and ant (6), was assessed in a range of pristine as well as polluted European habitats. These habitats included bulk and rhizosphere soils, manure from farm animals, activated sludge from wastewater treatment plants and seawater. The methods employed included assessments of the prevalence of the genes in habitat-extracted DNA by PCR, followed by hybridisation with specific probes, Sm-resistant culturable bacteria and exogenous isolation of plasmids carrying Sm-resistance determinants. The direct DNA-based analysis showed that aph (6)-1d genes were most prevalent in the habitats examined. The presence of the other four Sm-modifying genes was demonstrated in 58% of the tested habitats. A small fraction of the bacterial isolates (8%) did not possess any of the selected Sm-modifying genes. These isolates were primarily obtained from activated sludge and manure. The presence of Sm-modifying genes in the isolates often coincided with the presence of IncP plasmids. Exogenous isolation demonstrated the presence of plasmids of 40-200 kb in size harbouring Sm-resistance genes from all the environments tested. Most plasmids were shown to carry the ant (3'') gene, often in combination with other Sm-resistance genes, such as aph (3'') and aph (6)-1d. The most commonly found Sm-modifying gene on mobile genetic elements was ant (3''). Multiple Sm-resistance genes on the same genetic elements appeared to be the rule rather than the exception. It is concluded that Sm-resistance genes are widespread in the environmental habitats studied and often occur on mobile genetic elements and ant (3'') was most often encountered.200219709288
336380.9997Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module (rep and oriV) of other descent. The plasmids differed in composition of the 27.0-28.3 kbp accessory region, each of which carried ISCR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil.200919055690
355390.9997Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli. Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear.201627455416
3394100.9997Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles.202031930390
3358110.9997Novel class 1 integron harboring antibiotic resistance genes in wastewater-derived bacteria as revealed by functional metagenomics. Combatting antibiotic resistance is critical to our ability to treat infectious diseases. Here, we identified and characterized diverse antimicrobial resistance genes, including potentially mobile elements, from synthetic wastewater treatment microcosms exposed to the antibacterial agent triclosan. After seven weeks of exposure, the microcosms were subjected to functional metagenomic selection across 13 antimicrobials. This was achieved by cloning the combined genetic material from the microcosms, introducing this genetic library into E. coli, and selecting for clones that grew on media supplemented with one of the 13 antimicrobials. We recovered resistant clones capable of growth on media supplemented with a single antimicrobial, yielding 13 clones conferring resistance to at least one antimicrobial agent. Antibiotic susceptibility analysis revealed resistance ranging from 4 to >50 fold more resistant, while one clone showed resistance to multiple antibiotics. Using both Sanger and SMRT sequencing, we identified the predicted active gene(s) on each clone. One clone that conferred resistance to tetracycline contained a gene encoding a novel tetA-type efflux pump that was named TetA(62). Three clones contained predicted active genes on class 1 integrons. One integron had a previously unreported genetic arrangement and was named In1875. This study demonstrated the diversity and potential for spread of resistance genes present in human-impacted environments.202133515651
3557120.9997Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.201626991286
3704130.9997Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Various natural environments have been examined for the presence of antibiotic-resistant bacteria and/or novel resistance mechanisms, but little is known about resistance in the terrestrial deep subsurface. This study examined two deep environments that differ in their known period of isolation from surface environments and the bacteria therein. One hundred fifty-four strains of bacteria were isolated from sediments located 170-259 m below land surface at the US Department of Energy Savannah River Site (SRS) in South Carolina and Hanford Site (HS) in Washington. Analyses of 16S rRNA gene sequences showed that both sets of strains were phylogenetically diverse and could be assigned to several genera in three to four phyla. All of the strains were screened for resistance to 13 antibiotics by plating on selective media and 90% were resistant to at least one antibiotic. Eighty-six percent of the SRS and 62% of the HS strains were resistant to more than one antibiotic. Resistance to nalidixic acid, mupirocin, or ampicillin was noted most frequently. The results indicate that antibiotic resistance is common among subsurface bacteria. The somewhat higher frequencies of resistance and multiple resistance at the SRS may, in part, be due to recent surface influence, such as exposure to antibiotics used in agriculture. However, the HS strains have never been exposed to anthropogenic antibiotics but still had a reasonably high frequency of resistance. Given their long period of isolation from surface influences, it is possible that they possess some novel antibiotic resistance genes and/or resistance mechanisms.200918677528
4662140.9997Characterization of a multiresistant mosaic plasmid from a fish farm Sediment Exiguobacterium sp. isolate reveals aggregation of functional clinic-associated antibiotic resistance genes. The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms.201424362420
3556150.9997Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens.201526259681
3245160.9997From Metagenomes to Functional Expression of Resistance: floR Gene Diversity in Bacteria from Salmon Farms. Background. The increase in antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is related to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the main source of antibiotics in coastal waters. In this work, we aimed to characterize the genetic and phenotypic profiles of antibiotic resistance in bacterial communities from salmon farms. Methods. Bacterial metagenomes from an intensive aquaculture zone in southern Chile were sequenced, and the composition, abundance and sequence of antibiotic resistance genes (ARGs) were analyzed using assembled and raw read data. Total DNA from bacterial communities was used as a template to recover floR gene variants, which were tested by heterologous expression and functional characterization of phenicol resistance. Results. Prediction of ARGs in salmon farm metagenomes using more permissive parameters yielded significantly more results than the default Resistance Gene Identifier (RGI) software. ARGs grouped into drug classes showed similar abundance profiles to global ocean bacteria. The floR gene was the most abundant phenicol-resistance gene with the lowest gene counts, showing a conserved sequence although with variations from the reference floR. These differences were recovered by RGI prediction and, in greater depth, by mapping reads to the floR sequence using SNP base-calling. These variants were analyzed by heterologous expression, revealing the co-existence of high- and low-resistance sequences in the environmental bacteria. Conclusions. This study highlights the importance of combining metagenomic and phenotypic approaches to study the genetic variability in and evolution of antibiotic-resistant bacteria associated with salmon farms.202540001366
2863170.9997Detection of Aminoglycoside Resistant Bacteria in Sludge Samples From Norwegian Drinking Water Treatment Plants. Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6')-Ib, AAC(3')-II, APH(3')-II, APH(3')-III, could only explain the resistance of a few of the isolates selected for testing. aph(3')-II was detected in 1.6% of total isolates, aac(6')-Ib and aph(3')-III in 0.8%, while aac(3')-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment.201930918503
4657180.9997Discovery of the fourth mobile sulfonamide resistance gene. BACKGROUND: Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS: Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS: Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.201729246178
4531190.9997Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community. Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment.201424860553