# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3351 | 0 | 1.0000 | Quantification of the mobility potential of antibiotic resistance genes through multiplexed ddPCR linkage analysis. There is a clear need for global monitoring initiatives to evaluate the risks of antibiotic resistance genes (ARGs) towards human health. Therefore, not only ARG abundances within a given environment, but also their potential mobility, hence their ability to spread to human pathogenic bacteria needs to be quantified. We developed a novel, sequencing-independent method for assessing the linkage of an ARG to a mobile genetic element by statistical analysis of multiplexed droplet digital PCR (ddPCR) carried out on environmental DNA sheared into defined, short fragments. This allows quantifying the physical linkage between specific ARGs and mobile genetic elements, here demonstrated for the sulfonamide ARG sul1 and the Class 1 integron integrase gene intI1. The method's efficiency is demonstrated using mixtures of model DNA fragments with either linked and unlinked target genes: Linkage of the two target genes can be accurately quantified based on high correlation coefficients between observed and expected values (R2) as well as low mean absolute errors (MAE) for both target genes, sul1 (R2 = 0.9997, MAE = 0.71%, n = 24) and intI1 (R2 = 0.9991, MAE = 1.14%, n = 24). Furthermore, we demonstrate that adjusting the fragmentation length of DNA during shearing allows controlling rates of false positives and false negative detection of linkage. The presented method allows rapidly obtaining reliable results in a labor- and cost-efficient manner. | 2023 | 36941120 |
| 3674 | 1 | 0.9997 | New Estimation of Antibiotic Resistance Genes in Sediment Along the Haihe River and Bohai Bay in China: A Comparison Between Single and Successive DNA Extraction Methods. Sediment is thought to be a vital reservoir for antibiotic resistance genes (ARGs). Often, studies describing and comparing ARGs and their potential hosts in sediment are based on single DNA extractions. To date, however, no study has been conducted to assess the influence of DNA extraction efficiency on ARGs in sediment. To determine whether the abundance of ARGs is underestimated, we performed five successive extraction cycles with a widely used commercial kit in 10 sediment samples collected from the Haihe River and Bohai Bay. Our results showed that accumulated DNA yields after five extractions were 1.8-3.1 times higher than that by single DNA extractions. High-throughput sequencing showed that insufficient DNA extraction could generate PCR bias and skew community structure characterization in sediment. The relative abundances of some pathogenic bacteria, such as Enterobacteriales, Lactobacillales, and Streptomycetales, were significantly different between single and successive DNA extraction samples. In addition, real-time fluorescent quantitative PCR (qPCR) showed that ARGs, intI1, and 16S rRNA gene abundance strongly increased with increasing extraction cycles. Among the measured ARGs, sulfonamide resistance genes and multidrug resistance genes were dominant subtypes in the study region. Nevertheless, different subtypes of ARGs did not respond equally to the additional extraction cycles; some continued to have linear growth trends, and some tended to level off. Additionally, more correlations between ARGs and bacterial communities were observed in the successive DNA extraction samples than in the single DNA extraction samples. It is suggested that 3-4 additional extraction cycles are required in future studies when extracting DNA from sediment samples. Taken together, our results highlight that performing successive DNA extractions on sediment samples optimizes the extractable DNA yield and can lead to a better picture of the abundance of ARGs and their potential hosts in sediments. | 2021 | 34616375 |
| 3459 | 2 | 0.9996 | Diversity of antibiotic resistance gene variants at subsequent stages of the wastewater treatment process revealed by a metagenomic analysis of PCR amplicons. Wastewater treatment plants have been recognised as point sources of various antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) which are considered recently emerging biological contaminants. So far, culture-based and molecular-based methods have been successfully applied to monitor antimicrobial resistance (AMR) in WWTPs. However, the methods applied do not permit the comprehensive identification of the true diversity of ARGs. In this study we applied next-generation sequencing for a metagenomic analysis of PCR amplicons of ARGs from the subsequent stages of the analysed WWTP. The presence of 14 genes conferring resistance to different antibiotic families was screened by PCR. In the next step, three genes were selected for detailed analysis of changes of the profile of ARG variants along the process. A relative abundance of 79 variants was analysed. The highest diversity was revealed in the ermF gene, with 52 variants. The relative abundance of some variants changed along the purification process, and some ARG variants might be present in novel hosts for which they were currently unassigned. Additionally, we identified a pool of novel ARG variants present in the studied WWTP. Overall, the results obtained indicated that the applied method is sufficient for analysing ARG variant diversity. | 2023 | 38274111 |
| 3457 | 3 | 0.9996 | Design and Validation of Primer Sets for the Detection and Quantification of Antibiotic Resistance Genes in Environmental Samples by Quantitative PCR. The high prevalence of antibiotic resistant bacteria (ARB) in several environments is a great concern threatening human health. Particularly, wastewater treatment plants (WWTP) become important contributors to the dissemination of ARB to receiving water bodies, due to the inefficient management or treatment of highly antibiotic-concentrated wastewaters. Hence, it is vital to develop molecular tools that allow proper monitoring of the genes encoding resistances to these important therapeutic compounds (antibiotic resistant genes, ARGs). For an accurate quantification of ARGs, there is a need for sensitive and robust qPCR assays supported by a good design of primers and validated protocols. In this study, eleven relevant ARGs were selected as targets, including aadA and aadB (conferring resistance to aminoglycosides); ampC, bla(TEM), bla(SHV), and mecA (resistance to beta-lactams); dfrA1 (resistance to trimethoprim); ermB (resistance to macrolides); fosA (resistance to fosfomycin); qnrS (resistance to quinolones); and tetA(A) (resistance to tetracyclines). The in silico design of the new primer sets was performed based on the alignment of all the sequences of the target ARGs (orthology grade > 70%) deposited in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, allowing higher coverages of the ARGs' biodiversity than those of several primers described to date. The adequate design and performance of the new molecular tools were validated in six samples, retrieved from both natural and engineered environments related to wastewater treatment. The hallmarks of the optimized qPCR assays were high amplification efficiency (> 90%), good linearity of the standard curve (R(2) > 0.980), repeatability and reproducibility across experiments, and a wide linear dynamic range. The new primer sets and methodology described here are valuable tools to upgrade the monitorization of the abundance and emergence of the targeted ARGs by qPCR in WWTPs and related environments. | 2024 | 38748252 |
| 7651 | 4 | 0.9996 | Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall. Land application of manure introduces gastrointestinal microbes into the environment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agricultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and integrase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for temporary blooms of ARGs after manure application, likely linked to soil moisture levels. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best management practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate data. | 2020 | 33016404 |
| 3456 | 5 | 0.9996 | Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (bla(TEM), bla(CTX-M-1) group, bla(CTX-M-9) group, bla(OXA-48), bla(VIM), mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered. | 2018 | 29567433 |
| 3280 | 6 | 0.9996 | Optimization of five qPCR protocols toward the detection and the quantification of antimicrobial resistance genes in environmental samples. Here, we describe the optimization and validation of five quantitative PCR (qPCR) assays by employing the SYBRGreen chemistry paired with melting curve analysis to detect and quantify clinically relevant antimicrobial resistance genes (ARGs) (i.e. ermB, bla(CTXM1-like), bla(CMY-2), qnrA and qnrS) from environmental samples (i.e. soil and manure). These five protocols accurately detected and quantified the aforementioned ARGs in complex environmental matrices and represent useful tools for both diagnostic and monitoring activities of resistant bacteria and ARGs into the environment. | 2021 | 34754761 |
| 7323 | 7 | 0.9996 | Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Aquatic ecosystems have been increasingly threatened by anthropogenic activities, e.g., wastewater discharge and farm operation. Several methods are adopted to evaluate the effects of anthropogenic activities on biological risk in the environment, such as qPCR and amplicon next-generation sequencing. However, these methods fall short of providing genomic information of target species, which is vital for risk assessment from genomic aspect. Here, we developed a novel approach integrating metagenomic analysis and flow cytometry to identify and quantify potential pathogenic antibiotic resistant bacteria (PARB; carrying both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs)) in the environment, which are of particular concern due to their infection ability and antibiotic resistance. Based on the abundance/density of PARB, we evaluated microbiological risk in a river impacted by both municipal drainage and agriculture runoff. We collected samples upstream (mountainous area) as the control. Results showed that 81.8% of dominant PARB (33) recovered using our approach were related to known pathogenic taxa. In addition, intragenomic ARGs-VFGs coexistence patterns in the dominant Pseudomonas genomes (20 out of 71 PARB) showed high similarity with the most closely related Pseudomonas genomes from the NCBI RefSeq database. These results reflect acceptable reliability of the approach for (potential) pathogen identification in environmental samples. According to the PARB density, microbiological risk in samples from the agricultural area was significantly higher than in samples from the urban area. We speculated that this was due to the higher antibiotic usage in agriculture as well as intragenomic ARGs-VFGs co-evolution under antibiotic selective pressure. This study provides an alternative approach for the identification and quantification of PARB in aquatic environments, which can be applied for microbiological risk assessment. | 2020 | 31614233 |
| 7347 | 8 | 0.9996 | The environmental contribution to the dissemination of carbapenem and (fluoro)quinolone resistance genes by discharged and reused wastewater effluents: The role of cellular and extracellular DNA. Wastewater treatment plants (WWTPs) are major reservoirs and sources for the dissemination of antibiotic resistance into the environment. In this study, the population dynamics of two full-scale WWTPs was characterized along different sampling points, including the reused effluents, in both cellular and extracellular DNA samples. The analysis was performed by high throughput sequencing targeting the 16S rRNA V4 gene region and by three in-house TaqMan multiplex qPCR assays that detect and quantify the most clinically relevant and globally distributed carbapenem (bla) and (fluoro)quinolone (qnr) resistance genes. The obtained results identify the biological treatment as the crucial step on tailoring the wastewater bacterial community, which is thereafter maintained in both discharged and reused effluents. The influent bacterial community does not alter the WWTP core community, although it clearly contributes for the introduction and spread of antibiotic resistance to the in-house bacteria. The presence of high concentrations of bla and qnr genes was not only detected in the wastewater influents and discharged effluents, but also in the reused effluents, which therefore represent another gateway for antibiotic resistant bacteria and genes into the environment and directly to the human populations. Moreover, and together with the study of the cellular DNA, it was described for the first time the role of the extracellular DNA in the dissemination of carbapenem and (fluoro)quinolone resistance, as well as the impact of the wastewater treatment process on this DNA fraction. Altogether, the results prove that the current wastewater treatments are inefficient in the removal of antibiotic resistant bacteria and genes and reinforce that targeted treatments must be developed and implemented at full-scale in the WWTPs for wastewater reuse to become a safe and sustainable practice, able to be implemented in areas such as agricultural irrigation. | 2020 | 32623198 |
| 7104 | 9 | 0.9996 | Antibiotic resistance genes load in an antibiotic free organic broiler farm. Antibiotic resistance is a serious concern for public health. Farm environments are relevant reservoirs of antibiotic resistant bacteria and antibiotic resistance genes (ARGs), thus strategies to limit the spread of ARGs from farms to the environment are needed. In this study a broiler farm, where antibiotics have never been used for any purpose, was selected to evaluate if this measure is effective in reducing the ARGs load in farm environment (FE) and in meat processing environment (MPE). Faecal samples from FE and MPE were processed for DNA extraction. Detection and quantification of the 16S rRNA gene and selected ARGs (bla(TEM), qnrS, sul2, and tetA) were carried out by PCR and digital droplet PCR (ddPCR), respectively. Generally, the relative abundance of the quantified ARGs in FE was similar or higher than that measured in intensive farms. Furthermore, apart for tetA, no differences in relative abundances of the other ARGs between FE and MPE were determined. These results suggest that the choice to not use antibiotics in broiler farming is not so effective to limit the ARGs spread in MPE and that further sources of ARGs should be considered including the preceding production phase with particular reference to the breeding stage. | 2022 | 35091251 |
| 7105 | 10 | 0.9996 | Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces. The transfer of antibiotic resistance genes (ARGs) in the environment is a threat to both human and animal health. However, the contribution of bacteriophages to the dissemination of resistance genes via transduction is rarely explored. In this study, we screened pig feces from three commercial farms in China for 32 clinically relevant ARG types to assess the presence of the ARG population in bacteria and bacteriophage and further to estimate the contribution of bacteriophages to the dissemination of antibiotic resistance. We found that bacteriophage DNA contained 35.5% of the target ARG types and sul1, bla(TEM) and ermB were found in 100% of the phage DNA samples. The most abundant genes in the bacterial population were ermB and fexA whereas ermB was the most abundant in bacteriophage. In contrast, floR was the least abundant ARG in both populations. Also, the ratio index of the abundance of ARGs in bacteriophage and bacteria was firstly used in this study as an estimator of bacteriophage ability to transmit ARGs. The ratio for qnrA was the greatest (about 10(-1)) and differed from the most abundant bacteriophage ARG ermB. In addition, fexA had the lowest ratio value (about 10(-6)) and not floR. These results illustrate that ARGs abundance and detection rates used alone probably be not suitable for comprehensively judging the contribution of bacteriophage to the dissemination of antibiotic resistance. A more suitable model is the application of three indices; occurrence rate, absolute abundance in bacteriophage and the ratio value as warning and monitoring tools for environmental ARG assessments in bacteriophages. | 2018 | 29573711 |
| 3460 | 11 | 0.9996 | Bioprospecting for β-lactam resistance genes using a metagenomics-guided strategy. Emergence of new antibiotic resistance bacteria poses a serious threat to human health, which is largely attributed to the evolution and spread of antibiotic resistance genes (ARGs). In this work, a metagenomics-guided strategy consisting of metagenomic analysis and function validation was proposed for rapidly identifying novel ARGs from hot spots of ARG dissemination, such as wastewater treatment plants (WWTPs) and animal feces. We used an antibiotic resistance gene database to annotate 76 putative β-lactam resistance genes from the metagenomes of sludge and chicken feces. Among these 76 candidate genes, 25 target genes that shared 40~70% amino acid identity to known β-lactamases were cloned by PCR from the metagenomes. Their resistances to four β-lactam antibiotics were further demonstrated. Furthermore, the validated ARGs were used as the reference sequences to identify novel ARGs in eight environmental samples, suggesting the necessity of re-examining the profiles of ARGs in environmental samples using the validated novel ARG sequences. This metagenomics-guided pipeline does not rely on the activity of ARGs during the initial screening process and may specifically select novel ARG sequences for function validation, which make it suitable for the high-throughput screening of novel ARGs from environmental metagenomes. | 2017 | 28584911 |
| 6574 | 12 | 0.9995 | Exploiting microplastics and the plastisphere for the surveillance of human pathogenic bacteria discharged into surface waters in wastewater effluent. Discharge from wastewater treatment plants (WWTPs) is a well-characterised source of human pathogens and antimicrobial resistance genes entering the environment. However, determining whether pathogens released from effluent into surface waters are viable, and consequently pose a risk to human health, is hindered by the use of transient grab-sampling monitoring approaches. Here we present a novel surveillance system using low-cost microparticles (polyethylene, cork and rubber) deployed upstream and downstream of a WWTP effluent pipe, that exploits the ability of bacterial pathogens to form biofilms. Using quantitative culture-based and molecular methods, viable E. coli, Klebsiella spp., Citrobacter spp., and Enterococcus spp. were identified after only 24-hour of deployment. Moreover, these pathogens were continually present at each timepoint (2, 4, 6, 8, 10, 14 and 23 days) as biofilm communities matured, with all pathogens detected at higher concentrations downstream of the WWTP effluent pipe. Long-read whole genome sequencing revealed a suite of plasmids, virulence genes and antimicrobial resistance genes in bacterial pathogens isolated from biofilms formed downstream of the effluent pipe. Furthermore, recognising that pathogens are typically present at proportionally low concentrations within mixed biofilm communities, total biofilm pathogenicity was confirmed using a Galleria mellonella infection model. Full-length 16S rRNA gene sequencing revealed that human pathogens present in microplastic biofilms (the 'plastisphere') dominated the microbial community of infected G. mellonella larvae within 24 hr, suggesting these bacteria remained highly virulent. Overall, this study demonstrated the efficacy of an easy-to-deploy system for the surveillance and rapid detection of pathogenic bacteria being discharged from point-source pollution. We envisage that if used as part of an integrated environmental management approach, this approach could help to reduce the public and environmental health risks of human pathogens and antimicrobial resistance genes, by monitoring viable human pathogens entering surface waters. | 2025 | 40184703 |
| 7281 | 13 | 0.9995 | City-scale monitoring of antibiotic resistance genes by digital PCR and metagenomics. BACKGROUND: Anthropogenic activities significantly contribute to the dissemination of antibiotic resistance genes (ARGs), posing a substantial threat to humankind. The development of methods that allow robust ARG surveillance is a long-standing challenge. Here, we use city-scale monitoring of ARGs by using two of the most promising cutting-edge technologies, digital PCR (dPCR) and metagenomics. METHODS: ARG hot-spots were sampled from the urban water and wastewater distribution systems. Metagenomics was used to provide a broad view of ARG relative abundance and richness in the prokaryotic and viral fractions. From the city-core ARGs in all samples, the worldwide dispersed sul2 and tetW conferring resistance to sulfonamide and tetracycline, respectively, were monitored by dPCR and metagenomics. RESULTS: The largest relative overall ARG abundance and richness were detected in the hospital wastewater and the WWTP inlet (up to ≈6,000 ARGs/Gb metagenome) with a large fraction of unclassified resistant bacteria. The abundance of ARGs in DNA and RNA contigs classified as viruses was notably lower, demonstrating a reduction of up to three orders of magnitude compared to contigs associated to prokaryotes. By metagenomics and dPCR, a similar abundance tendency of sul2 and tetW was obtained, with higher abundances in hospital wastewater and WWTP input (≈125-225 ARGs/Gb metagenome). dPCR absolute abundances were between 6,000 and 18,600 copies per ng of sewage DNA (≈10(5-7) copies/mL) and 6.8 copies/mL in seawater near the WWTP discharging point. CONCLUSIONS: dPCR was more sensitive and accurate, while metagenomics provided broader coverage of ARG detection. While desirable, a reliable correlation of dPCR absolute abundance units into metagenomic relative abundance units was not obtained here (r(2) < 0.4) suggesting methodological factors that introduce variability. Evolutionary pressure does not significantly select the targeted ARGs in natural aquatic environments. | 2024 | 38491508 |
| 3147 | 14 | 0.9995 | Determination and quantification of microbial communities and antimicrobial resistance on food through host DNA-depleted metagenomics. Food products carry bacteria unless specifically sterilised. These bacteria can be pathogenic, commensal or associated with food spoilage, and may also be resistant to antimicrobials. Current methods for detecting bacteria on food rely on culturing for specific bacteria, a time-consuming process, or 16S rRNA metabarcoding that can identify different taxa but not their genetic content. Directly sequencing metagenomes of food is inefficient as its own DNA vastly outnumbers the bacterial DNA present. We optimised host DNA depletion enabling efficient sequencing of food microbiota, thereby increasing the proportion of non-host DNA sequenced 13-fold (mean; range: 1.3-40-fold) compared to untreated samples. The method performed best on chicken, pork and leafy green samples which had high mean prokaryotic read proportions post-depletion (0.64, 0.74 and 0.74, respectively), with lower mean prokaryotic read proportions in salmon (0.50) and prawn samples (0.19). We show that bacterial compositions and concentrations of antimicrobial resistance (AMR) genes differed by food type, and that salmon metagenomes were influenced by the production/harvesting method. The approach described in this study is an efficient and effective method of identifying and quantifying the predominant bacteria and AMR genes on food. | 2023 | 36462818 |
| 7384 | 15 | 0.9995 | Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing. | 2022 | 35306061 |
| 3458 | 16 | 0.9995 | MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage. Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them. | 2017 | 29163399 |
| 3682 | 17 | 0.9995 | Concentration of facultative pathogenic bacteria and antibiotic resistance genes during sewage treatment and in receiving rivers. Whereas the hygienic condition of drinking and bathing water by law must be monitored by culture-based methods, for quantification of microbes and antibiotic resistance in soil or the aquatic environment, often molecular genetic assays are used. For comparison of both methods, knowledge of their correlation is necessary. Therefore the population of total bacteria, Escherichia coli, enterococci and staphylococci during sewage treatment and in receiving river water was compared by agar plating and quantitative polymerase chain reaction (qPCR) assays. In parallel, all samples were investigated for clinically relevant antibiotic resistance genes. Whereas plating and qPCR data for total bacteria correlated well in sewage after primary treatment, qPCR data of river water indicated higher cell numbers for E. coli. It is unknown if these cells are 'only' not growing under standard conditions or if they are dead. Corresponding to the amount of non-culturable cells, the 'breakpoints' for monitoring water quality should be adapted. The abundances of clinically relevant antibiotic resistance genes in river water were in the same order of magnitude or even higher than in treated sewage. For estimation of the health risk it is important to investigate which species carry respective genes and whether these genes are disseminated via gene transfer. | 2016 | 27789876 |
| 6544 | 18 | 0.9995 | A rapid approach with machine learning for quantifying the relative burden of antimicrobial resistance in natural aquatic environments. The massive use and discharge of antibiotics have led to increasing concerns about antimicrobial resistance (AMR) in natural aquatic environments. Since the dose-response mechanisms of pathogens with AMR have not yet been fully understood, and the antibiotic resistance genes and bacteria-related data collection via field sampling and laboratory testing is time-consuming and expensive, designing a rapid approach to quantify the burden of AMR in the natural aquatic environment has become a challenge. To cope with such a challenge, a new approach involving an integrated machine-learning framework was developed by investigating the associations between the relative burden of AMR and easily accessible variables (i.e., relevant environmental variables and adjacent land-use patterns). The results, based on a real-world case analysis, demonstrate that the quantification speed has been reduced from 3-7 days, which is typical for traditional measurement procedures with field sampling and laboratory testing, to approximately 0.5 hours using the new approach. Moreover, all five metrics for AMR relative burden quantification exceed the threshold level of 85%, with F1-score surpassing 0.92. Compared to logistic regression, decision trees, and basic random forest, the adaptive random forest model within the framework significantly improves quantification accuracy without sacrificing model interpretability. Two environmental variables, dissolved oxygen and resistivity, along with the proportion of green areas were identified as three key feature variables for the rapid quantification. This study contributes to the enrichment of burden analyses and management practices for rapid quantification of the relative burden of AMR without dose-response information. | 2024 | 39047454 |
| 7397 | 19 | 0.9995 | Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones. | 2016 | 26978717 |