# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 334 | 0 | 1.0000 | Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells of Agrobacterium tumefaciens. Cell wall regenerating protoplasts from soybean cells kept in suspension culture were cocultivated with bacteria which were derived from the nopaline strain C58 of Agrobacterium tumefaciens. When the bacteria carried an oncogenic Ti-plasmid, about 5% of the surviving protoplasts were able to form calli on hormone-free agar in contrast to controls, where bacteria without Ti-plasmid were applied, and where no calli were formed. After isolation of DNA from hormone-independently growing cells further evidence for transformation was obtained by hybridization to Ti-plasmid specific RNA and by rescue of a segment with a bacterial resistance gene which had been inserted before into the T-DNA. Transfer of T-DNA harboring a neomycin-resistance gene activated by the nos-promoter resulted in calli growing on kanamycin. Verification of segments located at the left and the right part of the T-DNA indicated the presence of its entire length in transformed soybean cells. Expression of T-DNA genes was measured by the assay of nopaline-synthase. Cells cultured on agar had a much higher level of nopaline-synthase than fast growing cells in suspension culture. Transferring them to agar or treatment with azacytidine strongly increased synthesis of nopaline-synthase indicating a reversible repression presumably via a methylation mechanism. | 1987 | 24276903 |
| 445 | 1 | 0.9989 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 380 | 2 | 0.9989 | Expression of a chloramphenicol-resistance determinant carried on hybrid plasmids in gram-positive and gram-negative bacteria. To analyse the control of chloramphenicol (Cm) resistance conferred by the Staphylococcus aureus plasmid pUB112, a detailed restriction map of this plasmid has been constructed, and the position and orientation of the cat gene have been determined. An MboI restriction fragment carrying the entire cat gene of pUB112 was then cloned in another S. aureus plasmid, the kanamycin (Km) resistance vector pUB110. Depending on the orientation of the incorporated cat fragment, the level of Cm resistance varied dramatically in Bacillus subtilis cells. This effect could not be eliminated by deleting parts of the vector DNA, and only the introduction of a transcription termination signal led to orientation-independent Cm resistance. One such construct was further developed to yield a shuttle vector, replicating both in Escherichia coli and B. subtilis. Using this vector the expression of incorporated genes can be determined in both Gram-positive and Gram-negative bacteria. By in vitro transcription experiments using pUB110 DNA linearized with various restriction endonucleases as template, two pUB110 promoters could be localized and their orientations determined: one promoter controls a gene whose function is unknown, the other regulates the transcription of the KmR gene. | 1984 | 6442250 |
| 446 | 3 | 0.9988 | Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Lactobacilli are common inhabitants of the gastrointestinal tracts of mammals and have received considerable attention due to their putative health-promoting properties. Little is known about the traits that enhance the ability of these bacteria to inhabit the gastrointestinal tract. In this paper we describe the development and application of a strategy based on in vivo expression technology (IVET) that enables detection of Lactobacillus reuteri genes specifically induced in the murine gut. A plasmid-based system was constructed containing 'ermGT (which confers lincomycin resistance) as the primary reporter gene for selection of promoters active in the gastrointestinal tract of mice treated with lincomycin. A second reporter gene, 'bglM (beta-glucanase), allowed differentiation between constitutive and in vivo inducible promoters. The system was successfully tested in vitro and in vivo by using a constitutive promoter. Application of the IVET system with chromosomal DNA of L. reuteri 100-23 and reconstituted lactobacillus-free mice revealed three genes induced specifically during colonization. Two of the sequences showed homology to genes encoding xylose isomerase (xylA) and peptide methionine sulfoxide reductase (msrB), which are involved in nutrient acquisition and stress responses, respectively. The third locus showed homology to the gene encoding a protein whose function is not known. Our IVET system has the potential to identify genes of lactobacilli that have not previously been functionally characterized but which may be essential for growth of these bacteria in the gastrointestinal ecosystem. | 2003 | 12676681 |
| 264 | 4 | 0.9988 | The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS 50 R. We were not able to reproduce this result with IS 50 R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS 50 R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance. | 1994 | 7510018 |
| 6201 | 5 | 0.9988 | Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Fluoroquinolones (FQs) are antibiotics useful in the treatment of drug-resistant tuberculosis, but FQ-resistant mutants can be selected rapidly. Although mutations in the DNA gyrase are the principal cause of this resistance, pentapeptide proteins have been found to confer low-level FQ resistance in Gram-negative bacteria. MfpA is a pentapeptide repeat protein conserved in mycobacterial chromosomes, where it is adjacent to a group of four highly conserved genes termed a conservon. We wished to characterize the transcriptional regulation of the mfpA gene and relate its expression to ciprofloxacin resistance in M. smegmatis. Reverse transcription PCR showed that mfpA gene is part of an operon containing the conservon genes. Using a transcriptional fusion, we showed that a promoter was located 5' to the mfpEA operon. We determined the promoter activity under different growth conditions and found that the expression of the operon increases slightly in late growth phases in basic pH and in subinhibitory concentrations of ciprofloxacin. Finally, by cloning the mfpA gene in an inducible vector, we showed that induced expression of mfpA increases the ciprofloxacin Minimal Inhibitory Concentration. These results confirm that increased expression of the mfpA gene, which is part of the mfpEA operon, increases ciprofloxacin resistance in M. smegmatis. | 2021 | 33824663 |
| 6202 | 6 | 0.9988 | Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. The SOS response is a conserved response to DNA damage that is found in Gram-negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate than is normally observed, which is called the SOS mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in Escherichia coli and Klebsiella pneumoniae. In this study, we demonstrate that zinc blocks the SOS-induced development of chloramphenicol resistance in Enterobacter cloacae. Zinc also blocked the transfer of an extended spectrum beta-lactamase (ESBL) gene from Enterobacter to a susceptible E. coli strain. A zinc ionophore, zinc pyrithione, was ~100-fold more potent than zinc salts in inhibition of ciprofloxacin-induced hypermutation in E. cloacae. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Electrophoretic mobility shift assays (EMSAs) revealed that zinc, but not iron or manganese, blocked the ability of the E. coli RecA protein to bind to single-stranded DNA, an important early step in the recognition of DNA damage in enteric bacteria. This suggests a mechanism for zinc's inhibitory effects on bacterial SOS responses, including hypermutation. | 2018 | 30519543 |
| 386 | 7 | 0.9988 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 263 | 8 | 0.9988 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 387 | 9 | 0.9987 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 286 | 10 | 0.9987 | Plasmid rescue - a tool for reproducible recovery of genes from transfected mammalian cells? The efficient rescue of plasmids containing the thymidine kinase gene (tk) of Herpes simplex virus type I from genetically transformed mouse cells by transformation of bacteria is described. Rescued plasmids contain insertions of calf DNA used as a carrier in the transfection but usually lack portions of plasmid DNA. Deletions generally concern the region spanning from around the PvuII site of pBR322 to within the tetracycline resistance coding sequence, whereas the extent of tk sequence deletion varies, depending on the site of its integration (BamHI or PvuII) into the plasmid. Modelling the rescue process by transformation of bacteria with a mixture of original plasmids and sheared mouse cell DNA clearly demonstrates that deletions are caused by the presence of the mammalian DNA and they probably occur during re-transformation of bacteria before the onset of tetracycline gene expression. Plasmids lacking the Tcr region are reproducibly rescuable without deletion. Methods for reproducible re-isolation of transferred genes from mammalian cells are discussed. | 1984 | 6323922 |
| 6203 | 11 | 0.9987 | Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Several lines of evidence are presented that indicate that the level of tetracycline resistance of Esherichia coli strains harboring plasmid pBR322 varies according to whether the SOS system of the host bacteria has been induced. These include use of strains in which the SOS system is expressed constitutively (lexA def.), is thermoinducible (recA441) or noninducible (lexA ind-), or is highly repressed (multiple copies of lexA+). Similar induction was observed with the product of another plasmid gene, beta-lactamase. The amounts of extractable plasmid DNA were also increased by SOS induction, and we propose that the SOS-induced increases in levels of tetracycline resistance and beta-lactamase activity are due to an increased plasmid copy number. | 1989 | 2695953 |
| 6303 | 12 | 0.9987 | Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security. | 2022 | 35638841 |
| 289 | 13 | 0.9987 | A genetic system that reports transient activation of genes in Bacillus. Site-specific recombination is a powerful tool for precise excision of DNA fragments. We used this characteristic to construct a genetic system to report the transient activation of a promoter by promoting the stable acquisition of an antibiotic resistance marker by the bacterium. The system is composed of two compatible plasmid derivatives from Gram-positive bacteria. One of the plasmids allows the insertion of promoters upstream from tnpI, which encodes the site-specific recombinase of Tn4430. The second plasmid carries two selectable resistance genes: one is flanked by two site-specific recombination sequences and is lost following recombination; in contrast, the other resistance gene becomes functional after the site-specific recombination event. By inserting conditionally controlled promoters (the xylose-inducible xylA promoter or the plcA promoter whose expression is dependent on the growth medium) upstream of tnpI, we demonstrated that our genetic system responds to signals inducing transcription by conferring a new resistance phenotype to the host bacteria. Thus, this system can be used to identify genes which are transiently or conditionally expressed. | 1997 | 9427554 |
| 314 | 14 | 0.9987 | Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BACKGROUND: The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. RESULTS: In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. CONCLUSION: The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications. | 2011 | 21838857 |
| 8217 | 15 | 0.9987 | Mutagenicity of organophosphorus compounds in bacteria and Drosophila. 140 Organophosphorus compounds (OP's) have been tested for mutagenic activity in bacteria, principally by using two specially constructed sets of tester strains of the bacteria Salmonella typhimurium and Escherichia coli. It was found that 20% gave positive mutagenic responses and that this group of chemicals produce base subsitutions rather than frame-shift mutations. In most cases the DNA repair genes exrA+ and recA+ were required for mutagenic activity. Seven compounds were further tested in Drosophila melanogaster for the ability to induce recessive lethal mutations. In some of these cases the doses administered to the flies had to be very low due to the highly toxic nature of the compounds. To over-come this problem, the accumulation of recessive lethal mutations was measured in populations which were continually exposed to the compounds over a period of some 18 months. During this time the populations developed increased resistance to the compound and so the dose administered could gradually be increased. Six of the compounds were mutagenic. Of the compounds tested in both systems, those showing mutagenic activity in bacteria were also mutagenic in Drosophila, those not mutagenic in bacteria were not mutagenic in Drosophila. | 1975 | 806014 |
| 315 | 16 | 0.9987 | Phosphorothioate DNA as an antioxidant in bacteria. Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H(2)O(2). DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H(2)O(2). Resistance to H(2)O(2) was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H(2)O(2) than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H(2)O(2). These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria. | 2012 | 22772986 |
| 8228 | 17 | 0.9987 | Brucella abortus genes identified following constitutive growth and macrophage infection. The chronicity of Brucella abortus infection in humans and animals depends on the organism's ability to escape host defenses by gaining entry and surviving inside the macrophage. Although no human vaccine exists for Brucella, vaccine development in other bacteria has been based on deletions of selective nutritional as well as regulatory systems. Our goal is to develop a vaccine for Brucella. To further this aim, we have used a green fluorescent protein (GFP) reporter system to identify constitutively and intracellularly induced B. abortus genes. Constitutively producing gfp clones exhibited sequence homology with genes associated with protein synthesis and metabolism (initiation factor-1 and tRNA ribotransferase) and detoxification (organic hydroperoxidase resistance). Of greater interest, clones negative for constitutively produced gfp in agar were examined by fluorescence microscopy to detect promoter activity induced within macrophages 4 and 24 h following infection. Bacterial genes activated in macrophages 4 h postinfection appear to be involved in adapting to intracellular environmental conditions. Included in this group were genes for detoxification (lactoglyglutathione lyase gene), repair (formamidopyrimidine-DNA glycosylase gene), osmotic protection (K(+) transport gene), and site-specific recombination (xerD gene). A gene involved in metabolism and biosynthesis (deoxyxylulose 5' phosphate synthase gene) was also identified. Genes activated 24 h following infection were biosynthesis- and metabolism-associated genes (iron binding protein and rhizopine catabolism). Identification of B. abortus genes that are activated following macrophage invasion provides insight into Brucella pathogenesis and thus is valuable in vaccine design utilizing selective targeted deletions of newly identified Brucella genes. | 2001 | 11705955 |
| 6313 | 18 | 0.9987 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 8218 | 19 | 0.9987 | Mechanism of plasmic-mediated resistance to cadmium in Staphylococcus aureus. The mechanism of plasmid-mediated resistance to cadmium in Staphylococcus aureus was investigated. Protein synthesis in cell-free extracts from resistant or susceptible bacteria was equally susceptible to inhibition by Cd(2+), but spheroplasts from resistant bacteria retained their resistance. Resistant bacteria did not have a decreased affinity for cations in general, nor was active metabolism required for exclusion of Cd(2+). The kinetics of Cd(2+) uptake into susceptible and resistant bacteria suggested that the conformation of membrane proteins in resistant bacteria may be important in the exclusion of Cd(2+). | 1975 | 1137361 |