Microbiota restoration reduces antibiotic-resistant bacteria gut colonization in patients with recurrent Clostridioides difficile infection from the open-label PUNCH CD study. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
332401.0000Microbiota restoration reduces antibiotic-resistant bacteria gut colonization in patients with recurrent Clostridioides difficile infection from the open-label PUNCH CD study. BACKGROUND: Once antibiotic-resistant bacteria become established within the gut microbiota, they can cause infections in the host and be transmitted to other people and the environment. Currently, there are no effective modalities for decreasing or preventing colonization by antibiotic-resistant bacteria. Intestinal microbiota restoration can prevent Clostridioides difficile infection (CDI) recurrences. Another potential application of microbiota restoration is suppression of non-C. difficile multidrug-resistant bacteria and overall decrease in the abundance of antibiotic resistance genes (the resistome) within the gut microbiota. This study characterizes the effects of RBX2660, a microbiota-based investigational therapeutic, on the composition and abundance of the gut microbiota and resistome, as well as multidrug-resistant organism carriage, after delivery to patients suffering from recurrent CDI. METHODS: An open-label, multi-center clinical trial in 11 centers in the USA for the safety and efficacy of RBX2660 on recurrent CDI was conducted. Fecal specimens from 29 of these subjects with recurrent CDI who received either one (N = 16) or two doses of RBX2660 (N = 13) were analyzed secondarily. Stool samples were collected prior to and at intervals up to 6 months post-therapy and analyzed in three ways: (1) 16S rRNA gene sequencing for microbiota taxonomic composition, (2) whole metagenome shotgun sequencing for functional pathways and antibiotic resistome content, and (3) selective and differential bacterial culturing followed by isolate genome sequencing to longitudinally track multidrug-resistant organisms. RESULTS: Successful prevention of CDI recurrence with RBX2660 correlated with taxonomic convergence of patient microbiota to the donor microbiota as measured by weighted UniFrac distance. RBX2660 dramatically reduced the abundance of antibiotic-resistant Enterobacteriaceae in the 2 months after administration. Fecal antibiotic resistance gene carriage decreased in direct relationship to the degree to which donor microbiota engrafted. CONCLUSIONS: Microbiota-based therapeutics reduce resistance gene abundance and resistant organisms in the recipient gut microbiome. This approach could potentially reduce the risk of infections caused by resistant organisms within the patient and the transfer of resistance genes or pathogens to others. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01925417 ; registered on August 19, 2013.202133593430
332510.9997Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. BACKGROUND: Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS: We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS: Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS: Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.202438419010
332320.9996Minimal Impact on the Resistome of Children in Botswana After Azithromycin Treatment for Acute Severe Diarrheal Disease. BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION: NCT02803827.202439052715
316030.9996Impact of antibiotics on off-target infant gut microbiota and resistance genes in cohort studies. BACKGROUND: Young children are frequently exposed to antibiotics, with the potential for collateral consequences to the gut microbiome. The impact of antibiotic exposures to off-target microbes (i.e., bacteria not targeted by treatment) and antibiotic resistance genes (ARGs) is poorly understood. METHODS: We used metagenomic sequencing data from paired stool samples collected prior to antibiotic exposure and at 1 year from over 200 infants and a difference-in-differences approach to assess the relationship between subsequent exposures and the abundance or compositional diversity of microbes and ARGs while adjusting for covariates. RESULTS: By 1 year, the abundance of multiple species and ARGs differed by antibiotic exposure. Compared to infants never exposed to antibiotics, Bacteroides vulgatus relative abundance increased by 1.72% (95% CI: 0.19, 3.24) while Bacteroides fragilis decreased by 1.56% (95% CI: -4.32, 1.21). Bifidobacterium species also exhibited opposing trends. ARGs associated with exposure included class A beta-lactamase gene CfxA6. Among infants attending day care, Escherichia coli and ARG abundance were both positively associated with antibiotic use. CONCLUSION: Novel findings, including the importance of day care attendance, were identified through considering microbiome data at baseline and post-intervention. Thus, our study design and approach have important implications for future studies evaluating the unintended impacts of antibiotics. IMPACT: The impact of antibiotic exposure to off-target microbes and antibiotic resistance genes in the gut is poorly defined. We quantified these impacts in two cohort studies using a difference-in-differences approach. Novel to microbiome studies, we used pre/post-antibiotic data to emulate a randomized controlled trial. Compared to infants unexposed to antibiotics between baseline and 1 year, the relative abundance of multiple off-target species and antibiotic resistance genes was altered. Infants who attended day care and were exposed to antibiotics within the first year had a higher abundance of Escherichia coli and antibiotic resistance genes; a novel finding warranting further investigation.202235568730
510640.9996Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from Côte d'Ivoire: a proof-of-concept study. BACKGROUND: The intestinal microbiome is a complex community and its role in influencing human health is poorly understood. While conventional microbiology commonly attributes digestive disorders to a single microorganism, a metagenomic approach can detect multiple pathogens simultaneously and might elucidate the role of microbial communities in the pathogenesis of intestinal diseases. We present a proof-of-concept that a shotgun metagenomic approach provides useful information on the diverse composition of intestinal pathogens and antimicrobial resistance profiles in human stool samples. METHODS: In October 2012, we obtained stool specimens from patients with persistent diarrhea in south Côte d'Ivoire. Four stool samples were purposefully selected and subjected to microscopy, multiplex polymerase chain reaction (PCR), and a metagenomic approach. For the latter, we employed the National Center for Biotechnology Information nucleotide database and screened for 36 pathogenic organisms (bacteria, helminths, intestinal protozoa, and viruses) that may cause digestive disorders. We further characterized the bacterial population and the prevailing resistance patterns by comparing our metagenomic datasets with a genome-specific marker database and with a comprehensive antibiotic resistance database. RESULTS: In the four patients, the metagenomic approach identified between eight and 11 pathogen classes that potentially cause digestive disorders. For bacterial pathogens, the diagnostic agreement between multiplex PCR and metagenomics was high; yet, metagenomics diagnosed several bacteria not detected by multiplex PCR. In contrast, some of the helminth and intestinal protozoa infections detected by microscopy were missed by metagenomics. The antimicrobial resistance analysis revealed the presence of genes conferring resistance to several commonly used antibiotics. CONCLUSIONS: A metagenomic approach provides detailed information on the presence and diversity of pathogenic organisms in human stool samples. Metagenomic studies allow for in-depth molecular characterization such as the antimicrobial resistance status, which may be useful to develop setting-specific treatment algorithms. While metagenomic approaches remain challenging, the benefits of gaining new insights into intestinal microbial communities call for a broader application in epidemiologic studies. TRIAL REGISTRATION: ISRCTN86951400.201626391184
254350.9996Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. BACKGROUND: Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS: At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS: This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.202236008821
314860.9995Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.202337093913
314470.9995Impact of florfenicol dosing regimen on the phenotypic and genotypic resistance of enteric bacteria in steers. The food animal sector's use of antimicrobials is heavily critiqued for its role in allowing resistance to develop against critically important antimicrobials in human health. The WHO recommends using lower tier antimicrobials such as florfenicol for disease treatment. The primary objective of this study was to assess the differences in resistance profiles of enteric microbes following administration of florfenicol to steers using both FDA-approved dosing regimens and two different detection methods. Our hypothesis was that we would identify an increased prevalence of resistance in the steers administered the repeated, lower dose of florfenicol; additionally, we hypothesized resistance profiles would be similar between both detection methods. Twelve steers were administered either two intramuscular (20 mg/kg q 48 h; n = 6) or a single subcutaneous dose (40 mg/kg, n = 6). Fecal samples were collected for 38 days, and E. coli and Enterococcus were isolated and tested for resistance. Fecal samples were submitted for metagenomic sequencing analysis. Metagenomics revealed genes conferring resistance to aminoglycosides as the most abundant drug class. Most multidrug resistance genes contained phenicols. The genotypic and phenotypic patterns of resistance were not similar between drug classes. Observed increases in resistant isolates and relative abundance of resistance genes peaked after drug administration and returned to baseline by the end of the sampling period. The use of a "lower tier" antimicrobial, such as florfenicol, may cause an increased amount of resistance to critically important antimicrobials for a brief period, but these changes largely resolve by the end of the drug withdrawal period.202438418677
314780.9995Determination and quantification of microbial communities and antimicrobial resistance on food through host DNA-depleted metagenomics. Food products carry bacteria unless specifically sterilised. These bacteria can be pathogenic, commensal or associated with food spoilage, and may also be resistant to antimicrobials. Current methods for detecting bacteria on food rely on culturing for specific bacteria, a time-consuming process, or 16S rRNA metabarcoding that can identify different taxa but not their genetic content. Directly sequencing metagenomes of food is inefficient as its own DNA vastly outnumbers the bacterial DNA present. We optimised host DNA depletion enabling efficient sequencing of food microbiota, thereby increasing the proportion of non-host DNA sequenced 13-fold (mean; range: 1.3-40-fold) compared to untreated samples. The method performed best on chicken, pork and leafy green samples which had high mean prokaryotic read proportions post-depletion (0.64, 0.74 and 0.74, respectively), with lower mean prokaryotic read proportions in salmon (0.50) and prawn samples (0.19). We show that bacterial compositions and concentrations of antimicrobial resistance (AMR) genes differed by food type, and that salmon metagenomes were influenced by the production/harvesting method. The approach described in this study is an efficient and effective method of identifying and quantifying the predominant bacteria and AMR genes on food.202336462818
465490.9995Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. Several studies have recently identified the main factors contributing to the bacterial colonization of newborns and the dynamics of the infant microbiome development. However, most of these studies address large time periods of weeks or months after birth, thereby missing on important aspects of the early microbiome maturation, such as the acquisition of antibiotic resistance determinants during postpartum hospitalization. The pioneer bacterial colonization and the extent of its associated antibiotic resistance gene (ARG) dissemination during this early phase of life are largely unknown. Studies addressing resistant bacteria or ARGs in neonates often focus only on the presence of particular bacteria or genes from a specific group of antibiotics. In the present study, we investigated the gut-, the oral-, and the skin-microbiota of neonates within the first 72 h after birth using 16S rDNA sequencing approaches. In addition, we screened the neonates and their mothers for the presence of 20 different ARGs by directed TaqMan qPCR assays. The taxonomic analysis of the newborn samples revealed an important shift of the microbiota during the first 72 h after birth, showing a clear site-specific colonization pattern in this very early time frame. Moreover, we report a substantial acquisition of ARGs during postpartum hospitalization, with a very high incidence of macrolide resistance determinants and mecA detection across different body sites of the newborns. This study highlights the importance of antibiotic resistance determinant dissemination in neonates during hospitalization, and the need to investigate the implication of the mothers and the hospital environment as potential sources of ARGs.202032754449
3149100.9995Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. Introduction: To consider the growing health issues caused by antibiotic resistance from a "one health" perspective, the contribution of meat production needs to be addressed. While antibiotic resistance is naturally present in microbial communities, the treatment of farm animals with antibiotics causes an increase in antibiotic resistance genes (ARG) in the gut microbiome. Pigs are among the most prevalent animals in agriculture; therefore, reducing the prevalence of antibiotic-resistant bacteria in the pig gut microbiome could reduce the spread of antibiotic resistance. Probiotics are often studied as a way to modulate the microbiome and are, therefore, an interesting way to potentially decrease antibiotic resistance. Methods: To assess the efficacy of a probiotic to reduce the prevalence of ARGs in the pig microbiome, six pigs received either treatment with antibiotics (tylvalosin), probiotics (Pediococcus acidilactici MA18/5M; Biopower(®) PA), or a combination of both. Their faeces and ileal digesta were collected and DNA was extracted for whole genome shotgun sequencing. The reads were compared with taxonomy and ARG databases to identify the taxa and resistance genes in the samples. Results: The results showed that the ARG profiles in the faeces of the antibiotic and combination treatments were similar, and both were different from the profiles of the probiotic treatment (p < 0.05). The effects of the treatments were different in the digesta and faeces. Many macrolide resistance genes were detected in a higher proportion in the microbiome of the pigs treated with antibiotics or the combination of probiotics and antibiotics. Resistance-carrying conjugative plasmids and horizontal transfer genes were also amplified in faeces samples for the antibiotic and combined treatments. There was no effect of treatment on the short chain fatty acid content in the digesta or the faeces. Conclusion: There is no positive effect of adding probiotics to an antibiotic treatment when these treatments are administered simultaneously.202438606356
2549110.9995Effects of selective digestive decontamination (SDD) on the gut resistome. OBJECTIVES: Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. METHODS: We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. RESULTS: The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. CONCLUSIONS: ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens.201424710024
3245120.9995From Metagenomes to Functional Expression of Resistance: floR Gene Diversity in Bacteria from Salmon Farms. Background. The increase in antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is related to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the main source of antibiotics in coastal waters. In this work, we aimed to characterize the genetic and phenotypic profiles of antibiotic resistance in bacterial communities from salmon farms. Methods. Bacterial metagenomes from an intensive aquaculture zone in southern Chile were sequenced, and the composition, abundance and sequence of antibiotic resistance genes (ARGs) were analyzed using assembled and raw read data. Total DNA from bacterial communities was used as a template to recover floR gene variants, which were tested by heterologous expression and functional characterization of phenicol resistance. Results. Prediction of ARGs in salmon farm metagenomes using more permissive parameters yielded significantly more results than the default Resistance Gene Identifier (RGI) software. ARGs grouped into drug classes showed similar abundance profiles to global ocean bacteria. The floR gene was the most abundant phenicol-resistance gene with the lowest gene counts, showing a conserved sequence although with variations from the reference floR. These differences were recovered by RGI prediction and, in greater depth, by mapping reads to the floR sequence using SNP base-calling. These variants were analyzed by heterologous expression, revealing the co-existence of high- and low-resistance sequences in the environmental bacteria. Conclusions. This study highlights the importance of combining metagenomic and phenotypic approaches to study the genetic variability in and evolution of antibiotic-resistant bacteria associated with salmon farms.202540001366
3327130.9995Ribaxamase, an Orally Administered β-Lactamase, Diminishes Changes to Acquired Antimicrobial Resistance of the Gut Resistome in Patients Treated with Ceftriaxone. INTRODUCTION: Intravenous (IV) β-lactam antibiotics, excreted through bile into the gastrointestinal (GI) tract, may disrupt the gut microbiome by eliminating the colonization resistance from beneficial bacteria. This increases the risk for Clostridium difficile infection (CDI) and can promote antimicrobial resistance by selecting resistant organisms and eliminating competition by non-resistant organisms. Ribaxamase is an orally administered β-lactamase for use with IV β-lactam antibiotics (penicillins and cephalosporins) and is intended to degrade excess antibiotics in the upper GI before they can disrupt the gut microbiome and alter the resistome. METHODS: Longitudinal fecal samples (349) were collected from patients who participated in a previous Phase 2b clinical study with ribaxamase for prevention of CDI. In that previous study, patients were treated with ceftriaxone for a lower respiratory tract infection and received concurrent ribaxamase or placebo. Extracted fecal DNA from the samples was subjected to whole-genome shotgun sequencing and analyzed for the presence of antimicrobial resistance (AMR) genes by alignment of sequences against the Comprehensive Antibiotic Resistance Database. A qPCR assay was also used to confirm some of the results. RESULTS: Database alignment identified ~1300 acquired AMR genes and gene variants, including those encoding β-lactamases and vancomycin resistance which were significantly increased in placebo vs ribaxamase-treated patients following antibiotic exposure. qPCR corroborated the presence of these genes and supported both new acquisition and expansion of existing gene pools based on no detectable copy number or a low copy number in pre-antibiotic samples which increased post-antibiotics. Additional statistical analyses demonstrated significant correlations between changes in the gut resistome and clinical study parameters including study drug assignment and β-lactamase and vancomycin resistance gene frequency. DISCUSSION: These findings demonstrated that ribaxamase reduced changes to the gut resistome subsequent to ceftriaxone administration and may help limit the emergence of AMR.202032801790
4674140.9995Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture. Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.201526147573
3874150.9995Culture-enriched human gut microbiomes reveal core and accessory resistance genes. BACKGROUND: Low-abundance microorganisms of the gut microbiome are often referred to as a reservoir for antibiotic resistance genes. Unfortunately, these less-abundant bacteria can be overlooked by deep shotgun sequencing. In addition, it is a challenge to associate the presence of resistance genes with their risk of acquisition by pathogens. In this study, we used liquid culture enrichment of stools to assemble the genome of lower-abundance bacteria from fecal samples. We then investigated the gene content recovered from these culture-enriched and culture-independent metagenomes in relation with their taxonomic origin, specifically antibiotic resistance genes. We finally used a pangenome approach to associate resistance genes with the core or accessory genome of Enterobacteriaceae and inferred their propensity to horizontal gene transfer. RESULTS: Using culture-enrichment approaches with stools allowed assembly of 187 bacterial species with an assembly size greater than 1 million nucleotides. Of these, 67 were found only in culture-enriched conditions, and 22 only in culture-independent microbiomes. These assembled metagenomes allowed the evaluation of the gene content of specific subcommunities of the gut microbiome. We observed that differentially distributed metabolic enzymes were associated with specific culture conditions and, for the most part, with specific taxa. Gene content differences between microbiomes, for example, antibiotic resistance, were for the most part not associated with metabolic enzymes, but with other functions. We used a pangenome approach to determine if the resistance genes found in Enterobacteriaceae, specifically E. cloacae or E. coli, were part of the core genome or of the accessory genome of this species. In our healthy volunteer cohort, we found that E. cloacae contigs harbored resistance genes that were part of the core genome of the species, while E. coli had a large accessory resistome proximal to mobile elements. CONCLUSION: Liquid culture of stools contributed to an improved functional and comparative genomics study of less-abundant gut bacteria, specifically those associated with antibiotic resistance. Defining whether a gene is part of the core genome of a species helped in interpreting the genomes recovered from culture-independent or culture-enriched microbiomes.201930953542
3326160.9995Antimicrobial Resistance Gene Acquisition and Depletion Following Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. Fecal microbiota transplantation (FMT) may be a novel approach to eliminate multidrug-resistant bacteria from the gut and to prevent future infections. Using whole metagenome sequencing data from 8 FMT donor-recipient pairs, we identified 37 and 95 antimicrobial resistance genes that were acquired by or removed from FMT recipients, respectively.201829020222
3467170.9995Epidemiological characteristics of antibiotic resistance genes in various bacteria worldwide. OBJECTIVES: This study aims to investigate the epidemiological characteristics of various bacteria carrying ARGs on a global scale over extended time periods. METHODS: A total of 25,285 globally isolated bacteria's genomes were analyzed to explore ARGs. The analysis focused on temporal, geographic, and species distribution, including pathogenic and non-pathogenic bacteria, intracellular parasitic states, ARG types, and their association with MGEs. Multiple linear regression was employed to identify ARG risk factors in bacteria. RESULTS: The overall prevalence of bacteria with ARGs was 64.2%, indicating that at least one ARG was present in 64.2% (16,243/25,285) of the included bacterial, with an average of 14.4 ARGs per bacterium. ARGs have been increasing globally, averaging one additional ARG every three years, closely linked to rising antibiotic consumption. Pathogenic bacteria harbored more ARGs than non-pathogenic ones. Intracellular parasitic bacteria still carry specific types of ARGs despite being less likely to generate ARGs. Clinical and human-associated bacteria showed higher ARG counts, and bacteria isolated from humans had the highest number of disinfectant-resistant genes. The average number of ARGs in bacteria isolated from high-middle-income and lower-middle-income countries is higher. Factors like motility, non-sporulation, Gram-positive staining, extracellular parasitism, and human pathogenicity are linked to higher ARGs levels. CONCLUSIONS: An increasing number of bacteria carrying ARGs pose a significant challenge to the control of antibiotics-resistant pathogens worldwide. The issue of bacteria carrying more ARGs requires greater global attention.202540147137
3238180.9995Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. BACKGROUND: Antimicrobial resistance (AMR) has been regarded as a major threat to global health. Pigs are considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of large-scale quantitative data on the distribution of ARGs in the pig production industry. The bacterial species integrated ARGs in the gut microbiome have not been clarified. RESULTS: In the present study, we used deep metagenomic sequencing data of 451 samples from 425 pigs including wild boars, Tibetan pigs, and commercial or cross-bred experimental pigs under different rearing modes, to comprehensively survey the diversity and distribution of ARGs and detect the bacteria integrated in these ARGs. We identified a total of 1295 open reading frames (ORFs) recognized as antimicrobial resistance protein-coding genes. The ORFs were clustered into 349 unique types of ARGs, and these could be further classified into 69 drug resistance classes. Tetracycline resistance was most enriched in pig feces. Pigs raised on commercial farms had a significantly higher AMR level than pigs under semi-free ranging conditions or wild boars. We tracked the changes in the composition of ARGs at different growth stages and gut locations. There were 30 drug resistance classes showing significantly different abundances in pigs between 25 and 240 days of age. The richness of ARGs and 41 drug resistance classes were significantly different between cecum lumen and feces in pigs from commercial farms, but not in wild boars. We identified 24 bacterial species that existed in almost all tested samples (core bacteria) and were integrated 128 ARGs in their genomes. However, only nine ARGs of these 128 ARGs were core ARGs, suggesting that most of the ARGs in these bacterial species might be acquired rather than constitutive. We selected three subsets of ARGs as indicators for evaluating the pollution level of ARGs in samples with high accuracy (r = 0.73~0.89). CONCLUSIONS: This study provides a primary overview of ARG profiles in various farms under different rearing modes, and the data serve as a reference for optimizing the use of antimicrobials and evaluating the risk of pollution by ARGs in pig farms. Video abstract.202235246246
3875190.9995Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture.202539752189