# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3306 | 0 | 1.0000 | Using Culture-Enriched Phenotypic Metagenomics for Targeted High-Throughput Monitoring of the Clinically Important Fraction of the β-Lactam Resistome. High bacterial community diversity and complexity greatly challenge the cost-efficient monitoring of clinically prevalent antibiotic-resistant bacteria, which are usually present as rare and important populations involved in the environmental dissemination of clinical resistance. Here, we introduce culture-enriched phenotypic metagenomics that integrates culture enrichment, phenotypic screening, and metagenomic analyses as an emerging standardized methodology for targeted resistome monitoring and apply it to decipher the extended-spectrum β-lactam resistome in a municipal wastewater treatment plant (WWTP) and its receiving river. The results showed that clinically prevalent carbapenemase genes (e.g., the NDM and KPC families) and extended-spectrum β-lactamase genes (e.g., the CTX-M, TEM, and OXA families) were prevalent in the WWTP and showed prominent potential in horizontal dissemination. Strikingly, carbapenem and polymyxin resistance genes co-occurred in the highly virulent nosocomial pathogens Enterobacter kobei and Citrobacter freundii. Overall, this study exemplifies phenotypic metagenomics for high-throughput surveillance of a targeted clinically important fraction of antibiotic resistomes and substantially expands current knowledge on extended-spectrum β-lactam resistance in WWTPs. | 2022 | 35930686 |
| 3307 | 1 | 0.9999 | Diversity of β-lactamase-encoding genes in wastewater: bacteriophages as reporters. A reservoir of antibiotic resistance genes (ARGs) is present in pathogenic, commensal, and environmental bacteria as well as in mobile genetic elements, including bacteriophages. Wastewater treatment plants (WWTPs) are considered hotspots for the spread of ARGs. The aim of this work was to analyze the diversity of the highly prevalent ARGs bla(CTX-M) and bla(TEM) in bacterial and bacteriophage fractions associated with human and animal environments through the study of urban waste and animal residues discharged into WWTPs to provide information about the composition and maintenance of the current resistome in Buenos Aires, Argentina. The results showed that a putative extended-spectrum variant of the bla(TEM) gene was the most frequently detected, with bla(TEM-116) being the most prevalent, while a recently described type, bla(TEM-229), was also found. In the bacteriophage fraction, we detected bla(CTX-M) genes from four out of the five clusters described. The detection of bla(CTX- M-9)-like and bla(CTX-M-25)-like genes was unexpected based on surveys of the ARGs from clinical pathogens circulating regionally. The finding of divergent bla(CTX-M) sequences associated with previously reported environmental genes argues in favor of the natural environment as a reservoir of resistance genes. ARGs were detected in bacteriophages as frequently as in bacterial communities, and furthermore, the bla(CTX-M) genes were more diverse in the bacteriophage fraction. Bacteriophages might therefore play a role in the spread of ARGs in the environment, but they might also be used as "reporters" for monitoring circulating ARGs. | 2021 | 33683473 |
| 1865 | 2 | 0.9999 | Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which bla(CTX-M) was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies. | 2025 | 40245502 |
| 2577 | 3 | 0.9998 | Molecular Detection of bla(TEM) and bla(SHV) Genes in ESBL-Producing Acinetobacter baumannii Isolated from Antarctic Soil. The phenomenon of antimicrobial resistance (AMR) in cold environments, exemplified by the Antarctic, calls into question the assumption that pristine ecosystems lack clinically significant resistance genes. This study examines the molecular basis of AMR in Acinetobacter spp. Isolated from Antarctic soil, focusing on the bla(TEM) and bla(SHV) genes associated with extended-spectrum beta-lactamase (ESBL) production; Soil samples were collected and processed to isolate Antarctic soil bacteria. Molecular detection was then conducted using polymerase chain reaction (PCR) to identify the bacteria species by 16S rRNA/rpoB and 10 different beta-lactamase-producing genes. PCR amplicons were sequenced to confirm gene identity and analyze genetic variability. Acinetobacter baumannii were identified by both microbiological and molecular tests. Notably, both the bla(TEM) and bla(SHV) genes encoding the enzymes responsible for resistance to penicillins and cephalosporins were identified, indicating the presence of resistance determinants in bacteria from extreme cold ecosystems. The nucleotide sequence analysis indicated the presence of conserved ARGs, which suggest stability and the potential for horizontal gene transfer within microbial communities. These findings emphasize that AMR is not confined to human-impacted environments but can emerge and persist in remote, cold habitats, potentially facilitated by natural reservoirs and global microbial dispersal. Understanding the presence and role of AMR in extreme environments provides insights into its global dissemination and supports the development of strategies to mitigate the spread of resistance genes in both environmental and clinical contexts. | 2025 | 40142377 |
| 3299 | 4 | 0.9998 | Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome. The emergence and spread of resistance to antibiotics among bacteria is the most serious global threat to public health in recent and coming decades. In this study, we characterized qualitatively and quantitatively β-lactamase and carbapenemase genes in the wastewater resistome of Central Wastewater Treatment Plant in Koziegłowy, Poland. The research concerns determination of the frequency of genes conferring resistance to β-lactam and carbapenem antibiotics in the genomes of culturable bacteria, as well as in the wastewater metagenome at three stages of treatment: raw sewage, aeration tank, and final effluent. In the final effluent we found bacteria with genes that pose the greatest threat to public health, including genes of extended spectrum β-lactamases - bla(CTX-M), carbapenemases - bla(NDM), bla(VIM), bla(GES), bla(OXA-48), and showed that during the wastewater treatment their frequency increased. Moreover, the wastewater treatment process leads to significant increase in the relative abundance of bla(TEM) and bla(GES) genes and tend to increase the relative abundance of bla(CTX-M), bla(SHV) and bla(OXA-48) genes in the effluent metagenome. The biodiversity of bacterial populations increased during the wastewater treatment and there was a correlation between the change in the composition of bacterial populations and the variation of relative abundance of β-lactamase and carbapenemase genes. PCR-based quantitative metagenomic analysis combined with analyses based on culture methods provided significant information on the routes of ARBs and ARGs spread through WWTP. The limited effectiveness of wastewater treatment processes in the elimination of antibiotic-resistant bacteria and resistance genes impose the need to develop an effective strategy and implement additional methods of wastewater disinfection, in order to limit the increase and the spread of antibiotic resistance in the environment. | 2020 | 31756613 |
| 3313 | 5 | 0.9998 | The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. Hospital sewage plays a key role in the dissemination of antibiotic-resistant genes (ARGs) by serving as an environmental antimicrobial resistance reservoir. In this study, we aimed to characterize the cephalosporin- and carbapenem-resistant isolates from hospital sewage and receiving rivers. The results showed that ESBL (bla(CTX-M)) and carbapenemase genes (bla(NDM) and bla(KPC)) were widely detected in a number of different bacterial species. These resistance genes were mainly harbored in Enterobacteriaceae, followed by Acinetobacter and Aeromonas isolates. More attention should be given to these bacteria as important vectors of ARGs in the environment. Furthermore, we showed that the multidrug resistance phenotype was highly prevalent, which was found in 85.5% Enterobacteriaceae and 75% Acinetobacter strains. Notably, the presence of carbapenemase genes in isolates from treated effluents and receiving rivers indicates that the discharges of wastewater treatment plants could be an important source for high-risk resistance genes propagation to the environment. In conclusion, this study shows a high prevalence of ESBL- and carbapenemase-producing bacteria in hospital sewage and receiving rivers in China. These findings have serious implications for human health, and also suggest the need for more efforts to control the dissemination of resistant bacteria from hospital sewage into the environment. | 2020 | 32069792 |
| 2564 | 6 | 0.9998 | Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance. Antibiotic misuse in livestock is a major threat to human health, as bacteria are quickly developing resistance to them. We performed a comparative analysis of 25 faecal metagenomes from swine, poultry, cattle, and humans to investigate their resistance profiles. Our analysis revealed that all genes conferring resistance to antibiotic classes assessed except tetracyclines were more prevalent in poultry manure than in the remaining species. We detected clinically relevant antibiotic resistance genes, such as mcr-1 which confers resistance to polymyxins. Among them, extended-spectrum β-lactamase blaCTX-M genes were particularly abundant in all species. Poultry manure was identified as a hotspot for multidrug resistance, which may compromise medical treatment options. Urgent actions in the livestock industry are imperative to hamper the emergence and spread of antibiotic resistance. | 2023 | 36758925 |
| 2578 | 7 | 0.9998 | Bacteria tolerant to colistin in coastal marine environment: Detection, microbiome diversity and antibiotic resistance genes' repertoire. The global spread of mobilized colistin resistance (mcr) genes in clinical and natural environments dangerously diminishes the effectiveness of this last-resort antibiotic, becoming an urgent health threat. We used a multidisciplinary approach to detect mcr-1 gene and colistin (CL)-resistant bacteria in seawater from two Croatian public beaches. Illumina-based sequencing of metagenomic 16S rRNA was used to assess the taxonomic, functional, and antibiotic resistance genes (ARGs) profiling of the bacterial community tolerant to CL regarding different culture-based isolation methodologies. Data revealed that the choice of methodology alters the diversity and abundance of taxa accounting for the CL-resistance phenotype. The mcr-1 gene was identified by cloning and sequencing in one sample, representing the first report of mcr-1 gene in Croatia. Culturing of CL-resistant strains revealed their resistance phenotypes and concurrent production of clinically significant β-lactamases, such as CTX-M-15, CTX-M-3 and SHV-12. We also report the first identification of bla(CTX-M-15) gene in Klebsiella huaxiensis and K. michiganensis, as well as the bla(TEM-1+CTX-M-3) in Serratia fonticola. ARGs profiles derived from metagenomic data and predicted by PICRUSt2, showed the highest abundance of genes encoding for multidrug efflux pumps, followed by the transporter genes accounting for the tetracycline, macrolide and phenicol resistance. Our study evidenced the multidrug resistance features of CL-tolerant bacterial communities thriving in surface beach waters. We also showed that combined application of the metagenomic approaches and culture-based techniques enabled successful detection of mcr-1 gene, which could be underreported in natural environment. | 2021 | 34289613 |
| 5368 | 8 | 0.9998 | Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country. In developing countries, where high levels of antimicrobial resistance are observed in hospitals, the surveillance of this phenomenon in wastewater treatment plants (WWTPs) and the environment is very limited, especially using cutting-edge culture-independent methods. In this study, the composition of bacterial communities, the resistome and mobilome (the pool of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), respectively) at a WWTP were determined using shotgun metagenomics and culture-based approaches. Wastewater samples were collected at four sampling points of a WWTP in Antioquia, Colombia. A total of 24 metagenomes were analyzed. Specifically, there were marked differences in bacterial community composition, resistome, and mobilome, according to the WWTP sampling points. Bacterial families of clinical importance such as Moraxellaceae, Aeromonadaceae, and Enterobacteriaceae were mainly detected in the WWTP influent and effluent samples. Genes encoding resistance to macrolide-lincosamide-streptogramin, β-lactams, and those conferring multidrug resistance (e.g., acrB, adeG, and mexD) were the most abundant. Moreover, some clinically important ARGs such as bla(KPC-2) and bla(CTX-M), and others not reported locally, such as bla(TEM-196), bla(GES-23), bla(OXA-10), mcr-3, and mcr-5 were frequently detected. Co-occurrence network analyses indicated a significant association of ARGs such as bla(OXA-58) and bla(KPC) genes with Aeromonadaceae and Enterobacteriaceae. Among the markers of MGEs, intI1 and ISCR8 were the most frequently detected. Altogether, this work reveals the importance of shotgun metagenomics and culture-based approaches in antimicrobial resistance studies. The findings also support that WWTPs are hotspots for antimicrobial resistance, whose analysis constitutes a powerful tool to predict the impact of antimicrobial resistance in a population. | 2021 | 33618114 |
| 3297 | 9 | 0.9998 | Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies. | 2021 | 33919179 |
| 2574 | 10 | 0.9998 | Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. | 2016 | 27235436 |
| 3314 | 11 | 0.9998 | Carbapenemase and extended-spectrum β-lactamase producing bacteria isolated from municipal wastewater treatment plant and urban river in Nepal. Municipal wastewater treatment plants (WWTPs) and rivers receiving sewage are known hotspots for antibiotic-resistant bacteria (ARB), harboring a wide variety of antibiotic resistance genes (ARGs) and mobile genetic elements. However, the specific distribution of ARB carrying multiple resistance genes in municipal WWTPs and their receiving rivers in Kathmandu remains unclear. Therefore, this study investigated the proportion of antibiotic-resistant bacterial populations and the presence of various ARGs and integrons in carbapenemase- and extended-spectrum β-lactamase (ESBL)-producing bacteria isolated from municipal wastewater and river water. The improvement in water's physicochemical characteristics and a significant reduction in ARB and antibiotic resistance determinants were observed in treated municipal wastewater compared to untreated wastewater. Among 232 bacterial isolates from these samples, 34.82 % were identified as carbapenemase producers, while 42.50 % were confirmed as ESBL producers. E. coli and K. pneumoniae were the predominant carbapenemase- and ESBL-producing bacteria, with their highest abundance in untreated municipal wastewater. Among carbapenemase-producing bacteria, bla (NDM) and bla (OXA) genes were more prevalent, whereas bla (TEM) and bla (CTX-M) genes were commonly detected in ESBL-producing bacteria. Nearly half of these bacterial isolates carried the intI1 gene, indicating its role in the dissemination of ARGs. These findings underscore the critical role of WWTPs in the removal of chemical and biological pollutants, highlighting their significance in urban ecosystem-based adaptation. However, the simultaneous presence of multiple resistance genes and integrons in ARB contributes to the rising antimicrobial resistance in the environment, emphasizing the need for targeted efforts to manage and mitigate the spread of resistance factors. | 2025 | 40979679 |
| 1866 | 12 | 0.9998 | Drivers of the emergence and dissemination of high-risk resistance genes in cattle farm. Extended spectrum β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales (CPE) are recognized by WHO as critical concerns. The high cephalosporin resistance rate in a cattle farm in 2018 prompted us to conduct long-term (2019-2023) and extensive monitoring to explore risk factors for the import and transmission of ESBLs and CPE in this farm. Among 1288 samples from cattle, the environment, milk, and biological vectors, 48.8 % carried bla(CTX-M)-positive Enterobacterales with bla(CTX-M-55) being dominant (76.4 %), and bla(NDM-5)-positive strains emerged in 2022 with a 1.9 % detection rate. bla(CTX-M-55) and bla(NDM-5) were likely introduced through various routes, especially wild birds, and have persisted due to overuse of cephalosporins in the farm. The spread of these genes was driven by the horizontal transmission of IncHI2 and IncX3 plasmids and clonal dissemination of certain clones. Cross-regional and cross-border transmission of bla(CTX-M-55)- and/or bla(NDM-5)-bearing bacteria and plasmids possibly occurred via wild birds, animal trade, and other means. Our findings suggest that the import, persistence, and dissemination of these genes within and beyond this farm, were fueled by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to prevent the spread of resistance genes as part of a holistic One Health strategy. ENVIRONMENTAL IMPLICATION: The high prevalence and long-term persistence of extended-spectrum β-lactamases and the emergence of carbapenemases in cattle and the environment signify a critical risk of transmitting high-risk resistance genes, posing a significant threat to human health. Consequently, bacteria carrying these genes in animal farms should be regarded as "hazardous materials". Import, persistence, and dissemination of these genes within and beyond this farm were exacerbated by suboptimal biosecurity practices and inadequate antibiotic stewardship, highlighting the urgency for integrated public and ecosystem health policies to mitigate the environmental risks associated with gene transmission as part of a comprehensive One Health strategy. | 2025 | 39899930 |
| 3305 | 13 | 0.9998 | Assessing the risk of exposure to antimicrobial resistance at public beaches: Genome-based insights into the resistomes, mobilomes and virulomes of beta-lactams resistant Enterobacteriaceae from recreational beaches in Lagos, Nigeria. The role of recreational water use in the acquisition and transmission of antimicrobial resistance (AMR) is under-explored in low- and middle-income countries (LMICs). We used whole genome sequence analysis to provide insights into the resistomes, mobilomes and virulomes of 14 beta-lactams resistant Enterobacterales isolated from water and wet-sand at four recreational beaches in Lagos, Nigeria. Carriage of multiple beta-lactamase genes was detected in all isolates except two, including six isolates carrying bla(NDM-1). Most detected antibiotic resistance genes (ARGs) were located within a diverse landscape of plasmids, insertion sequences and transposons including the presence of ISKpn14 upstream of bla(NDM-1) in a first report in Africa. Virulence genes involved in adhesion and motility as well as secretion systems are particularly abundant in the genomes of the isolates. Our results confirmed the four beaches are contaminated with bacteria carrying clinically relevant ARGs associated with mobile genetic elements (MGE) which could promote the transmission of ARGs at the recreational water-human interface. | 2024 | 38492327 |
| 3317 | 14 | 0.9998 | Prevalence and Diversity of Antibiotic Resistance Genes in Swedish Aquatic Environments Impacted by Household and Hospital Wastewater. Antibiotic-resistant Enterobacteriaceae and non-lactose fermenting Gram-negative bacteria are a major cause of nosocomial infections. Antibiotic misuse has fueled the worldwide spread of resistant bacteria and the genes responsible for antibiotic resistance (ARGs). There is evidence that ARGs are ubiquitous in non-clinical environments, especially those affected by anthropogenic activity. However, the emergence and primary sources of ARGs in the environment of countries with strict regulations for antibiotics usage are not fully explored. The aim of the present study was to evaluate the repertoire of ARGs of culturable Gram-negative bacteria from directionally connected sites from the hospital to the wastewater treatment plant (WWTP), and downstream aquatic environments in central Sweden. The ARGs were detected from genomic DNA isolated from a population of selectively cultured coliform and Gram-negative bacteria using qPCR. The results show that hospital wastewater was a reservoir of several class B β-lactamase genes such as bla (IMP-1) , bla (IMP-2), and bla (OXA-23), however, most of these genes were not observed in downstream locations. Moreover, β-lactamase genes such as bla (OXA-48), bla (CTX-M-8), and bla (SFC-1), bla (V IM-1), and bla (V IM-13) were detected in downstream river water but not in the WWTP. The results indicate that the WWTP and hospital wastewaters were reservoirs of most ARGs and contribute to the diversity of ARGs in associated natural environments. However, this study suggests that other factors may also have minor contributions to the prevalence and diversity of ARGs in natural environments. | 2019 | 31019498 |
| 4993 | 15 | 0.9998 | The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: A scoping review. The natural aquatic environment is a significant contributor to the development and circulation of clinically significant antibiotic resistance genes (ARGs). The potential for the aquatic environment to act as a reservoir for ARG accumulation in areas receiving anthropogenic contamination has been thoroughly researched. However, the emergence of novel ARGs in the absence of external influences, as well as the capacity of environmental bacteria to disseminate ARGs via mobile genetic elements remain relatively unchallenged. In order to address these knowledge gaps, this scoping literature review was established focusing on the detection of two important and readily mobile ARGs, namely, extended spectrum beta-lactamase (ESBL) and carbapenemase genes. This review included 41 studies from 19 different countries. A range of different water bodies including rivers (n = 26), seawaters (n = 6) and lakes (n = 3), amongst others, were analysed in the included studies. ESBL genes were reported in 29/41 (70.7%) studies, while carbapenemase genes were reported in 13/41 (31.7%), including joint reporting in 9 studies. The occurrence of mobile genetic elements was evaluated, which included the detection of integrons (n = 22), plasmids (n = 18), insertion sequences (n = 4) and transposons (n = 3). The ability of environmental bacteria to successfully transfer resistance genes via conjugation was also examined in 11 of the included studies. The findings of this scoping review expose the presence of clinically significant ARGs in the natural aquatic environment and highlights the potential ability of environmental isolates to disseminate these genes among different bacterial species. As such, the results presented demonstrate how anthropogenic point discharges may not act as the sole contributor to the development and spread of clinically significant antibiotic resistances. A number of critical knowledge gaps in current research were also identified. Key highlights include the limited number of studies focusing on antibiotic resistance in uncontaminated aquatic environments as well as the lack of standardisation among methodologies of reviewed investigations. | 2020 | 32438141 |
| 4991 | 16 | 0.9998 | Genomic and metagenomic analysis reveals shared resistance genes and mobile genetic elements in E. coli and Klebsiella spp. isolated from hospital patients and hospital wastewater at intra- and inter-genus level. Antimicrobial resistance (AMR) is a global problem that gives serious cause for concern. Hospital wastewater (HWW) is an important link between the clinical setting and the natural environment, and an escape route for pathogens that cause hospital infections, including urinary tract infections (UTI). Bacteria of the genera Escherichia and Klebsiella are common etiological factors of UTI, especially in children, and they can cause short-term infections, as well as chronic conditions. ESBL-producing Escherichia and Klebsiella have also emerged as potential indicators for estimating the burden of antimicrobial resistance under environmental conditions and the spread of AMR between clinical settings and the natural environment. In this study, whole-genome sequencing and the nanopore technology were used to analyze the complete genomes of ESBL-producing E.coli and Klebsiella spp. and the HWW metagenome, and to characterize the mechanisms of AMR. The similarities and differences in the encoded mechanisms of AMR in clinical isolates (causing UTI) and environmental strains (isolated from HWW and the HWW metagenome) were analyzed. Special attention was paid to the genetic context and the mobility of antibiotic resistance genes (ARGs) to determine the common sources and potential transmission of these genes. The results of this study suggest that the spread of drug resistance from healthcare facilities via HWW is not limited to the direct transmission of resistant clonal lines that are typically found in the clinical setting, but it also involves the indirect transfer of mobile elements carrying ARGs between bacteria colonizing various environments. Hospital wastewater could offer a supportive environment for plasmid evolution through the insertion of new ARGs, including typical chromosomal regions. These results indicate that interlined environments (hospital patients - HWW) should be closely monitored to evaluate the potential transmission routes of drug resistance in bacteria. | 2024 | 39038407 |
| 2836 | 17 | 0.9998 | Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. OBJECTIVES: Multidrug-resistant Enterobacteriaceae pose a significant threat to public health. We aimed to study the impact of sewage treatment effluent on antibiotic resistance reservoirs in a river. METHODS: River sediment samples were taken from downstream and upstream of a waste water treatment plant (WWTP) in 2009 and 2011. Third-generation cephalosporin (3GC)-resistant Enterobacteriaceae were enumerated. PCR-based techniques were used to elucidate mechanisms of resistance, with a new two-step PCR-based assay developed to investigate bla(CTX-M-15) mobilization. Conjugation experiments and incompatibility replicon typing were used to investigate plasmid ecology. RESULTS: We report the first examples of bla(CTX-M-15) in UK river sediment; the prevalence of bla(CTX-M-15) was dramatically increased downstream of the WWTP. Ten novel genetic contexts for this gene were identified, carried in pathogens such as Escherichia coli ST131 as well as indigenous aquatic bacteria such as Aeromonas media. The bla(CTX-M-15) -gene was readily transferable to other Gram-negative bacteria. We also report the first finding of an imipenem-resistant E. coli in a UK river. CONCLUSIONS: The high diversity and host range of novel genetic contexts proves that evolution of novel combinations of resistance genes is occurring at high frequency and has to date been significantly underestimated. We have identified a worrying reservoir of highly resistant enteric bacteria in the environment that poses a threat to human and animal health. | 2014 | 24797064 |
| 2575 | 18 | 0.9998 | A systematic scoping review of antibiotic-resistance in drinking tap water. Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance. | 2024 | 39341535 |
| 3318 | 19 | 0.9998 | Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Antibiotic resistant bacteria (ARB) are a major health risk caused particularly by anthropogenic activities. Acquisition of antibiotic resistances by bacteria is known to have happened before the discovery of antibiotics and can occur through different routes. Bacteriophages are thought to have an important contribution to the dissemination of antibiotic resistance genes (ARGs) in the environment. In this study, seven ARGs (bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), mecA, vanA, and mcr-1) were investigated, in the bacteriophage fraction, in raw urban and hospital wastewaters. The genes were quantified in 58 raw wastewater samples collected at five WWTPs (n = 38) and hospitals (n = 20). All genes were detected in the phage DNA fraction, with the bla genes found in higher frequency. On the other hand, mecA and mcr-1 were the least frequently detected genes. Concentrations varied between 10(2) copies/L and 10(6) copies/L. The gene coding for the resistance to colistin (mcr-1), a last-resort antibiotic for the treatment of multidrug-resistant Gram-negative infections, was identified in raw urban and hospital wastewaters with positivity rates of 19 % and 10 %, respectively. ARGs patterns varied between hospital and raw urban wastewaters, and within hospitals and WWTP. This study suggests that phages are reservoirs of ARGs, and that ARGs (with particularly emphasis on resistance to colistin and vancomycin) in the phage fraction are already widely widespread in the environment with potential large implications for public health. | 2023 | 37315610 |