# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 32 | 0 | 1.0000 | Nitric Oxide Responsive Heavy Metal-Associated Gene AtHMAD1 Contributes to Development and Disease Resistance in Arabidopsis thaliana. Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity. | 2016 | 27917181 |
| 84 | 1 | 0.9993 | Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BACKGROUND: Local infection with necrotizing pathogens induces whole plant immunity to secondary challenge. Pathogenesis-related genes are induced in parallel with this systemic acquired resistance response and thought to be co-regulated. The hypothesis of co-regulation has been challenged by induction of Arabidopsis PR-1 but not systemic acquired resistance in npr1 mutant plants responding to Pseudomonas syringae carrying the avirulence gene avrRpt2. However, experiments with ndr1 mutant plants have revealed major differences between avirulence genes. The ndr1-1 mutation prevents hypersensitive cell death, systemic acquired resistance and PR-1 induction elicited by bacteria carrying avrRpt2. This mutation does not prevent these responses to bacteria carrying avrB. RESULTS: Systemic acquired resistance, PR-1 induction and PR-5 induction were assessed in comparisons of npr1-2 and ndr1-1 mutant plants, double mutant plants, and wild-type plants. Systemic acquired resistance was displayed by all four plant lines in response to Pseudomonas syringae bacteria carrying avrB. PR-1 induction was partially impaired by either single mutation in response to either bacterial strain, but only fully impaired in the double mutant in response to avrRpt2. PR-5 induction was not fully impaired in any of the mutants in response to either avirulence gene. CONCLUSION: Two pathways act additively, rather than in an obligatorily synergistic fashion, to induce systemic acquired resistance, PR-1 and PR-5. One of these pathways is NPR1-independent and depends on signals associated with hypersensitive cell death. The other pathway is dependent on salicylic acid accumulation and acts through NPR1. At least two other pathways also contribute additively to PR-5 induction. | 2002 | 12381270 |
| 83 | 2 | 0.9993 | Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Many plant-pathogen interactions are controlled by specific interactions between pathogen avirulence (avr) gene loci and the corresponding plant resistance R locus (gene-for-gene-hypothesis). Very often, this type of interaction culminates in a hypersensitive reaction (HR). However, recently pathogen-associated molecular patterns (PAMPs) such as flagellin or lipopolysaccharides (LPS) that are common to all bacteria have been shown to act as general elicitors of basal or innate immune responses in several plant species. Here, we summarize the genetic programs in Arabidopsis thaliana behind the LPS-induced basal response and the HR induced by harpin, respectively. Using Agilent Arabidopsis cDNA microarrays consisting of approximately 15,000 oligomers, changes in transcript accumulation of treated cells were monitored over a period of 24h after elicitor treatment. Analysis of the array data revealed significant responses to LPS (309 genes), harpin (951 genes) or both (313 genes). Concentrating our analysis on the genes encoding transcription factors, defence genes, cell wall biogenesis-related genes and signal transduction components we monitored interesting parallels, but also remarkably different expression patterns. Harpin and LPS induced an overlapping set of genes involved in cell wall biogenesis, cellular communication and signalling. The pattern of induced genes associated with cell rescue and general stress responses such as small heat-shock proteins was highly similar. In contrast, there is a striking difference regarding some of the most prominent, central components of plant defence such as WRKY transcription factors and oxidative burst-associated genes like NADPH oxidases, whose expression became apparent only after treatment with harpin. While both harpin and LPS can stimulate plant immunity in Arabidopsis, the PAMP LPS induces much more subtle host reactions at the transcriptome scale. The defence machinery induced by harpin resembles the known HR-type host responses leading to cell death after treatment with this elicitor. LPS is a weak inducer of basal resistance and induces a different pattern of genes. Strikingly the biggest overlap (40) of responding genes was found between the early harpin response (30min) and the late LPS response (24h). | 2008 | 18406364 |
| 31 | 3 | 0.9992 | miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance. | 2022 | 34968734 |
| 79 | 4 | 0.9992 | A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. SUMMARY Members of the GRAS family of transcriptional regulators have been implicated in the control of plant growth and development, and in the interaction of plants with symbiotic bacteria. Here we examine the complexity of the GRAS gene family in tomato (Solanum lycopersicum) and investigate its role in disease resistance and mechanical stress. A large number of tomato ESTs corresponding to GRAS transcripts were retrieved from the public database and assembled in 17 contigs of putative genes. Expression analysis of these genes by real-time RT-PCR revealed that six SlGRAS transcripts accumulate during the onset of disease resistance to Pseudomonas syringae pv. tomato. Further analysis of two selected family members showed that their transcripts preferentially accumulate in tomato plants in response to different avirulent bacteria or to the fungal elicitor EIX, and their expression kinetics correlate with the appearance of the hypersensitive response. In addition, transcript levels of eight SlGRAS genes, including all the Pseudomonas-inducible family members, increased in response to mechanical stress much earlier than upon pathogen attack. Accumulation of SlGRAS transcripts following mechanical stress was in part dependent on the signalling molecule jasmonic acid. Remarkably, suppression of SlGRAS6 gene expression by virus-induced gene silencing impaired tomato resistance to P. syringae pv. tomato. These results support a function for GRAS transcriptional regulators in the plant response to biotic and abiotic stress. | 2006 | 20507472 |
| 86 | 5 | 0.9992 | Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae. Genes encoding the virulence-promoting type III secretion system (T3SS) in phytopathogenic bacteria are induced at the start of infection, indicating that recognition of signals from the host plant initiates this response. However, the precise nature of these signals and whether their concentrations can be altered to affect the biological outcome of host-pathogen interactions remain speculative. Here we use a metabolomic comparison of resistant and susceptible genotypes to identify plant-derived metabolites that induce T3SS genes in Pseudomonas syringae pv tomato DC3000 and report that mapk phosphatase 1 (mkp1), an Arabidopsis mutant that is more resistant to bacterial infection, produces decreased levels of these bioactive compounds. Consistent with these observations, T3SS effector expression and delivery by DC3000 was impaired when infecting the mkp1 mutant. The addition of bioactive metabolites fully restored T3SS effector delivery and suppressed the enhanced resistance in the mkp1 mutant. Pretreatment of plants with pathogen-associated molecular patterns (PAMPs) to induce PAMP-triggered immunity (PTI) also restricts T3SS effector delivery and enhances resistance by unknown mechanisms, and the addition of the bioactive metabolites similarly suppressed both aspects of PTI. Together, these results demonstrate that DC3000 perceives multiple signals derived from plants to initiate its T3SS and that the level of these host-derived signals impacts bacterial pathogenesis. | 2014 | 24753604 |
| 80 | 6 | 0.9992 | Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria-host interactions, which are compromised under conditions of elevated temperature and CO(2) levels. Plants are simultaneously exposed to a variety of biotic and abiotic stresses, such as infections by viruses and bacteria, or drought. This study aimed to improve our understanding of interactions between viral and bacterial pathogens and the environment in the incompatible host Nicotiana benthamiana and the susceptible host Arabidopsis thaliana, and the contribution of viral virulence proteins to these responses. Infection by the Potato virus X (PVX)/Plum pox virus (PPV) pathosystem induced resistance to Pseudomonas syringae (Pst) and to drought in both compatible and incompatible bacteria-host interactions, once a threshold level of defence responses was triggered by the virulence proteins P25 of PVX and the helper component proteinase of PPV. Virus-induced resistance to Pst was compromised in salicylic acid and jasmonic acid signalling-deficient Arabidopsis but not in N. benthamiana lines. Elevated temperature and CO(2) levels, parameters associated with climate change, negatively affected resistance to Pst and to drought induced by virus infection, and this correlated with diminished H(2)O(2) production, decreased expression of defence genes and a drop in virus titres. Thus, diminished virulence should be considered as a potential factor limiting the outcome of beneficial trade-offs in the response of virus-infected plants to drought or bacterial pathogens under a climate change scenario. | 2020 | 31730035 |
| 327 | 7 | 0.9992 | Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene-mediated resistance triggered by the type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with (Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demonstrated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experimental condition has the power to explain variation in phenotypic responses to pathogen attack. | 2007 | 18083910 |
| 8777 | 8 | 0.9991 | Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Systemic acquired resistance is a pathogen-inducible defense mechanism in plants. The resistant state is dependent on endogenous accumulation of salicylic acid (SA) and is characterized by the activation of genes encoding pathogenesis-related (PR) proteins. Recently, selected nonpathogenic, root-colonizing biocontrol bacteria have been shown to trigger a systemic resistance response as well. To study the molecular basis underlying this type of systemic resistance, we developed an Arabidopsis-based model system using Fusarium oxysporum f sp raphani and Pseudomonas syringae pv tomato as challenging pathogens. Colonization of the rhizosphere by the biological control strain WCS417r of P. fluorescens resulted in a plant-mediated resistance response that significantly reduced symptoms elicited by both challenging pathogens. Moreover, growth of P. syringae in infected leaves was strongly inhibited in P. fluorescens WCS417r-treated plants. Transgenic Arabidopsis NahG plants, unable to accumulate SA, and wild-type plants were equally responsive to P. fluorescens WCS417r-mediated induction of resistance. Furthermore, P. fluorescens WCS417r-mediated systemic resistance did not coincide with the accumulation of PR mRNAs before challenge inoculation. These results indicate that P. fluorescens WCS417r induces a pathway different from the one that controls classic systemic acquired resistance and that this pathway leads to a form of systemic resistance independent of SA accumulation and PR gene expression. | 1996 | 8776893 |
| 8152 | 9 | 0.9991 | Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions. Plant glutathione S-transferases (GSTs) are ubiquitous and multifunctional enzymes encoded by large gene families. A characteristic feature of GST genes is their high inducibility by a wide range of stress conditions including biotic stress. Early studies on the role of GSTs in plant biotic stress showed that certain GST genes are specifically up-regulated by microbial infections. Later numerous transcriptome-wide investigations proved that distinct groups of GSTs are markedly induced in the early phase of bacterial, fungal and viral infections. Proteomic investigations also confirmed the accumulation of multiple GST proteins in infected plants. Furthermore, functional studies revealed that overexpression or silencing of specific GSTs can markedly modify disease symptoms and also pathogen multiplication rates. However, very limited information is available about the exact metabolic functions of disease-induced GST isoenzymes and about their endogenous substrates. The already recognized roles of GSTs are the detoxification of toxic substances by their conjugation with glutathione, the attenuation of oxidative stress and the participation in hormone transport. Some GSTs display glutathione peroxidase activity and these GSTs can detoxify toxic lipid hydroperoxides that accumulate during infections. GSTs can also possess ligandin functions and participate in the intracellular transport of auxins. Notably, the expression of multiple GSTs is massively activated by salicylic acid and some GST enzymes were demonstrated to be receptor proteins of salicylic acid. Furthermore, induction of GST genes or elevated GST activities have often been observed in plants treated with beneficial microbes (bacteria and fungi) that induce a systemic resistance response (ISR) to subsequent pathogen infections. Further research is needed to reveal the exact metabolic functions of GST isoenzymes in infected plants and to understand their contribution to disease resistance. | 2018 | 30622544 |
| 8776 | 10 | 0.9991 | Systemic resistance induced by rhizosphere bacteria. Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato under conditions in which the inducing bacteria and the challenging pathogen remained spatially separated. Bacterial strains differ in their ability to induce resistance in different plant species, and plants show variation in the expression of ISR upon induction by specific bacterial strains. Bacterial determinants of ISR include lipopolysaccharides, siderophores, and salicylic acid (SA). Whereas some of the rhizobacteria induce resistance through the SA-dependent SAR pathway, others do not and require jasmonic acid and ethylene perception by the plant for ISR to develop. No consistent host plant alterations are associated with the induced state, but upon challenge inoculation, resistance responses are accelerated and enhanced. ISR is effective under field conditions and offers a natural mechanism for biological control of plant disease. | 1998 | 15012509 |
| 25 | 11 | 0.9991 | Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. In many plants, including hot pepper plants, productivity is greatly affected by pathogen attack. We reported previously that tobacco stress-induced gene 1 (Tsi1) may play an important role in regulating stress responsive genes and pathogenesis-related (PR) genes. In this study, we demonstrated that overexpression of Tsi1 gene in transgenic hot pepper plants induced constitutive expression of several PR genes in the absence of stress or pathogen treatment. The transgenic hot pepper plants expressing Tsi1 exhibited resistance to Pepper mild mottle virus (PMMV) and Cucumber mosaic virus (CMV). Furthermore, these transgenic plants showed increased resistance to a bacterial pathogen, Xanthomonas campestris pv. vesicatoria and also an oomycete pathogen, Phytophthora capsici. These results suggested that ectopic expression of Tsi1 in transgenic hot pepper plants enhanced the resistance of the plants to various pathogens, including viruses, bacteria, and oomycete. These results suggest that using transcriptional regulatory protein genes may contribute to developing broad-spectrum resistance in crop plants. | 2002 | 12437295 |
| 81 | 12 | 0.9991 | Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum. | 2012 | 22432714 |
| 8785 | 13 | 0.9991 | Mechanism of resistance to Cucumber mosaic virus elicited by inoculation with Bacillus subtilis subsp. subtilis. BACKGROUND: Systemic resistance stimulated by rhizosphere bacteria is an important strategy for the management of plant viruses. The efficacy of Bacillus subtilis subsp. subtilis was assessed for protection of cucumber and Arabidopsis against Cucumber mosaic virus (CMV). Moreover, transcriptomic analysis was carried out for A. thaliana colonized with B. subtilis subsp. subtilis and infected with CMV. RESULTS: Treatment with a cell suspension of Bacillus revealed a significant reduction of CMV severity in comparison to their control. All Arabidopsis mutants treated with B. subtilis showed a clear reduction in CMV accumulation. Disease severity data and virus concentration titer measurements correlated with gene up-regulation in microarray and reverse transcription quantitative polymerase chain reaction (RT-qPCR) experiments. Bacillus treatment increased Arabidopsis growth characteristics (fresh and dry weights and number of leaflets) under pot conditions. The molecular mechanisms by which Bacillus activated resistance to CMV were investigated. Using the microarray hybridization technique, we were able to determine the mechanism of resistance elicited by B. subtilis against CMV. The transcriptomic analysis confirmed the up-regulation of more than 250 defense-related genes in Arabidopsis expressing induced systemic resistance (ISR). RT-qPCR results validated the overexpression of defense genes (YLS9 and PR1 in Arabidopsis and PR1 and LOX in cucumber), implying their important roles in the stimulated defense response. CONCLUSION: Through the study of microarray and RT-qPCR analyses, it can be concluded that the overexpression of pathogenesis-related genes was necessary to stimulate CMV defense in cucumber and Arabidopsis by B. subtilis subsp. subtilis. © 2021 Society of Chemical Industry. | 2022 | 34437749 |
| 85 | 14 | 0.9991 | Bacterial disease resistance in Arabidopsis through flagellin perception. Plants and animals recognize microbial invaders by detecting pathogen-associated molecular patterns (PAMPs) such as flagellin. However, the importance of flagellin perception for disease resistance has, until now, not been demonstrated. Here we show that treatment of plants with flg22, a peptide representing the elicitor-active epitope of flagellin, induces the expression of numerous defence-related genes and triggers resistance to pathogenic bacteria in wild-type plants, but not in plants carrying mutations in the flagellin receptor gene FLS2. This induced resistance seems to be independent of salicylic acid, jasmonic acid and ethylene signalling. Wild-type and fls2 mutants both display enhanced resistance when treated with crude bacterial extracts, even devoid of elicitor-active flagellin, indicating the existence of functional perception systems for PAMPs other than flagellin. Although fls2 mutant plants are as susceptible as the wild type when bacteria are infiltrated into leaves, they are more susceptible to the pathogen Pseudomonas syringae pv. tomato DC3000 when it is sprayed on the leaf surface. Thus, flagellin perception restricts bacterial invasion, probably at an early step, and contributes to the plant's disease resistance. | 2004 | 15085136 |
| 24 | 15 | 0.9991 | Environmental History Modulates Arabidopsis Pattern-Triggered Immunity in a HISTONE ACETYLTRANSFERASE1-Dependent Manner. In nature, plants are exposed to a fluctuating environment, and individuals exposed to contrasting environmental factors develop different environmental histories. Whether different environmental histories alter plant responses to a current stress remains elusive. Here, we show that environmental history modulates the plant response to microbial pathogens. Arabidopsis thaliana plants exposed to repetitive heat, cold, or salt stress were more resistant to virulent bacteria than Arabidopsis grown in a more stable environment. By contrast, long-term exposure to heat, cold, or exposure to high concentrations of NaCl did not provide enhanced protection against bacteria. Enhanced resistance occurred with priming of Arabidopsis pattern-triggered immunity (PTI)-responsive genes and the potentiation of PTI-mediated callose deposition. In repetitively stress-challenged Arabidopsis, PTI-responsive genes showed enrichment for epigenetic marks associated with transcriptional activation. Upon bacterial infection, enrichment of RNA polymerase II at primed PTI marker genes was observed in environmentally challenged Arabidopsis. Finally, repetitively stress-challenged histone acetyltransferase1-1 (hac1-1) mutants failed to demonstrate enhanced resistance to bacteria, priming of PTI, and increased open chromatin states. These findings reveal that environmental history shapes the plant response to bacteria through the development of a HAC1-dependent epigenetic mark characteristic of a primed PTI response, demonstrating a mechanistic link between the primed state in plants and epigenetics. | 2014 | 24963055 |
| 82 | 16 | 0.9991 | Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. To successfully infect a plant, bacterial pathogens inject a collection of Type III effector proteins (TTEs) directly into the plant cell that function to overcome basal defences and redirect host metabolism for nutrition and growth. We examined (i) the transcriptional dynamics of basal defence responses between Arabidopsis thaliana and Pseudomonas syringae and (ii) how basal defence is subsequently modulated by virulence factors during compatible interactions. A set of 96 genes displaying an early, sustained induction during basal defence was identified. These were also universally co-regulated following other bacterial basal resistance and non-host responses or following elicitor challenges. Eight hundred and eighty genes were conservatively identified as being modulated by TTEs within 12 h post-inoculation (hpi), 20% of which represented transcripts previously induced by the bacteria at 2 hpi. Significant over-representation of co-regulated transcripts encoding leucine rich repeat receptor proteins and protein phosphatases were, respectively, suppressed and induced 12 hpi. These data support a model in which the pathogen avoids detection through diminution of extracellular receptors and attenuation of kinase signalling pathways. Transcripts associated with several metabolic pathways, particularly plastid based primary carbon metabolism, pigment biosynthesis and aromatic amino acid metabolism, were significantly modified by the bacterial challenge at 12 hpi. Superimposed upon this basal response, virulence factors (most likely TTEs) targeted genes involved in phenylpropanoid biosynthesis, consistent with the abrogation of lignin deposition and other wall modifications likely to restrict the passage of nutrients and water to the invading bacteria. In contrast, some pathways associated with stress tolerance are transcriptionally induced at 12 hpi by TTEs. | 2006 | 16553893 |
| 30 | 17 | 0.9991 | RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. BACKGROUND: Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. RESULTS: Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. CONCLUSIONS: This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. | 2013 | 24090429 |
| 8778 | 18 | 0.9991 | The transcriptome of rhizobacteria-induced systemic resistance in arabidopsis. Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance, rhizobacteria-mediated ISR is not associated with changes in the expression of genes encoding pathogenesis-related proteins. To identify ISR-related genes, we surveyed the transcriptional response of over 8,000 Arabidopsis genes during rhizobacteria-mediated ISR. Locally in the roots, ISR-inducing Pseudomonas fluorescens WCS417r bacteria elicited a substantial change in the expression of 97 genes. However, systemically in the leaves, none of the approximately 8,000 genes tested showed a consistent change in expression in response to effective colonization of the roots by WCS417r, indicating that the onset of ISR in the leaves is not associated with detectable changes in gene expression. After challenge inoculation of WCS417r-induced plants with the bacterial leaf pathogen P. syringae pv. tomato DC3000, 81 genes showed an augmented expression pattern in ISR-expressing leaves, suggesting that these genes were primed to respond faster or more strongly upon pathogen attack. The majority of the primed genes was predicted to be regulated by jasmonic acid or ethylene signaling. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR. | 2004 | 15305611 |
| 8794 | 19 | 0.9990 | The Enhancement of Potato (Solanum Tuberosum L. Cv. Odyssey) Resistance to Bacterial Soft Rot Disease Through Transformation of the Glyphosate-Resistant Gene from Dickeya Dadanti. OBJECTIVE: An efficient protocol was developed via the Agrobacterium-mediated transformation method with the plasmid, p485, harboring the aroA gene from the bacterial species Dickeya dadantii, to improve resistance to potato bacterial soft rot disease. The study aimed to investigate the relationship between glyphosate application and the enhancement of potatoes' resistance to two bacterial pathogens affecting the plants. MATERIALS AND METHODS: An optimal concentration of 1.8 mg.L(-1) of glyphosate was applied to transgenic potato varieties. The leaves of the Odyssey cultivar demonstrated resistance to two pathogenic strains, Pectobacterium atrosepticum 21A and D. dadantii ENA49. Polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR) validation demonstrated the successful integration and heterologous expression of the aroA gene in the potato genome. Additionally, the transcriptional analysis revealed the expression of pathogenesis-related genes and genes associated with the potato defence response. RESULTS: The study revealed a significant increase in the expression of pathogenesis-related genes (PR-2, PR-3, and PR-5) and defence response genes (HSR-203j and HIN1 in transgenic potato leaves after glyphosate treatment and subsequent exposure to pathogenic bacterial infection, with a particular emphasis on the upregulation of HSR-203j. A comparative analysis assessed the average expression levels of these genes in both experimental and control samples. In contrast, minimal changes in gene expression were observed in plants infected with bacteria but not treated with glyphosate. CONCLUSION: The study suggests that glyphosate treatment in potatoes can enhance systemic acquired resistance to bacterial pathogens by upregulating pathogenesis-related and defence response genes. This approach shows potential for addressing bacterial diseases in potatoes, including soft bacterial rot. | 2024 | 40225297 |