# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3278 | 0 | 1.0000 | Prevalence of Antibiotic-Resistant Bacteria and Antibiotic-Resistant Genes and the Quantification of Antibiotics in Drinking Water Treatment Plants of Malaysia: Protocol for a Cross-sectional Study. BACKGROUND: Antimicrobial resistance is a known global public health threat. In addition, it brings serious economic consequences to agriculture. Antibiotic resistance in humans, animals, and environment is interconnected, as proposed in the tricycle surveillance by the World Health Organization. In Malaysia, research and surveillance of antimicrobial resistance are mainly performed in clinical samples, agricultural settings, and surface waters, but no surveillance of the drinking water systems has been performed yet. Hence, this policy-driven study is a combined effort of microbiologists and engineers to provide baseline data on the magnitude of antimicrobial resistance in the drinking water systems of Malaysia. OBJECTIVE: The aim of this study was to study the baseline level of antibiotic-resistant bacteria in the drinking water distribution systems of Malaysia by collecting samples from the pretreatment and posttreatment outlets of water treatment plants in a selected state of Malaysia. We aimed to determine the prevalence of antibiotic-resistant bacteria, the occurrence of antibiotic-resistant genes, and the level of antibiotics present in the drinking water systems. METHODS: This is a laboratory-based, cross-sectional study in a selected state of Malaysia. Water samples from 6 drinking water treatment plants were collected. Samples were collected at 3 sampling points, that is, the intake sampling station, service reservoir outlet station, and the distribution system sampling station. These were tested against 7 types of antibiotics in triplicates. Samples were screened for antibiotic-resistant bacteria and antibiotic-resistant genes and quantified for the level of antibiotics present in the drinking water treatment plants. RESULTS: We will show the descriptive statistics of the number of bacterial colonies harvested from water samples grown on Reasoner's 2A agar with or without antibiotics, the occurrence of antibiotic-resistant genes, and the level of antibiotics detected in the water samples. The sampling frame was scheduled to start from November 2021 and continue until December 2022. Data analysis is expected to be completed by early 2023, and the results are expected to be published in mid-2023. CONCLUSIONS: This study provides baseline information on the status of the antimicrobial-resistant bacteria, the presence of resistance genes as contaminants, and the level of antibiotics present in the drinking water systems of Malaysia, with the aim of demonstrating to policymakers the need to consider antimicrobial resistance as a parameter in drinking water surveillance. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/37663. | 2022 | 36409546 |
| 2574 | 1 | 0.9998 | Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue. | 2016 | 27235436 |
| 3298 | 2 | 0.9998 | Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) are constantly shed into the aquatic environment, with hospital wastewater potentially acting as an important source for resistance spread into the environment. A systematic review was conducted aiming to investigate the role of hospital wastewater on dissemination of antimicrobial resistance in the aquatic environment. Studies included in the review compared the prevalence of ARB and/or ARGs in hospital versus community wastewater. Data were extracted on ARB and/or ARG prevalence. Data on sampling techniques, microbiological methodology and risk of bias of included studies were recorded. Thirty-seven studies were included. Higher frequencies of antibiotic resistance determinants were found in hospital wastewater compared to community sources in 30/37 (81%) of included studies. However, trends for specific multi-drug-resistant bacteria differed. Antibiotic-resistant Gram-negative were more prevalent in hospital compared to community wastewaters, with higher concentrations of extended-spectrum-beta-lactamase-producing pathogens and carbapenemase-producing Enterobacteriaceae in hospital sources in 9/9 studies and 6/7 studies, respectively. Hospitals did not contribute consistently to the abundance of vancomycin-resistant Enterococci (VRE); 5/10 studies found higher abundance of VRE in hospital compared to community wastewaters. Reporting on sampling methods, wastewater treatment processes and statistical analysis were at high risk of bias. Extreme heterogeneity in study methods and outcome reporting precluded meta-analysis. Current evidence concurs that hospital wastewater is an important source for antibiotic resistance in aquatic environments, mainly multidrug-resistant Gram-negative bacteria. Future research is needed to assess the effect of wastewater treatment processes on overall antibiotic resistance in the aquatic environment. | 2020 | 32758846 |
| 2575 | 3 | 0.9998 | A systematic scoping review of antibiotic-resistance in drinking tap water. Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance. | 2024 | 39341535 |
| 4980 | 4 | 0.9998 | Co-selection of antibiotic and disinfectant resistance in environmental bacteria: Health implications and mitigation strategies. BACKGROUND: The rapid emergence of co-selection between antimicrobials, including antibiotics and disinfectants, presents a significant challenge to healthcare systems. This phenomenon exacerbates contamination risks and limits the effectiveness of strategies to combat antibiotic resistance in clinical settings. This study aimed to investigate the prevalence and characteristics of bacteria in hospital environments that exhibit co-selection mechanisms and their potential implications for patient health, framed within the One Health perspective. METHODS: Air and surface samples were collected from seven large hospitals and analyzed to detect antibiotic-resistant bacteria (ARB). The resistance profiles of isolated ARB to various disinfectants were determined. Bacterial species were identified using 16S rRNA gene sequencing, and the presence of antibiotic resistance genes (ARGs) and class 1 integrons (intI1) was investigated. RESULTS: A high percentage (85%) of samples contained ARB, with β-lactam resistance being the most frequently observed. Alarmingly, 94% of isolated ARB exhibited resistance to at least one disinfectant, and 91% demonstrated resistance to three or more disinfectants. Staphylococcus and Bacillus emerged as the dominant genera displaying co-selection. The presence of ARGs, including mecA (associated with methicillin resistance) and qacB (associated with disinfectant resistance), along with intI1, provided further evidence supporting co-selection mechanisms. CONCLUSION: These findings underscore the critical need for robust antimicrobial resistance surveillance and the prudent use of disinfectants in healthcare settings. Further research into co-selection mechanisms is essential to inform the development of effective infection control strategies and minimize the spread of resistant bacteria. | 2025 | 39732420 |
| 3309 | 5 | 0.9997 | Prevalence of a carbapenem-resistance gene (KPC), vancomycin-resistance genes (van A/B) and a methicillin-resistance gene (mecA) in hospital and municipal sewage in a southwestern province of Saudi Arabia. OBJECTIVE: According to the World Health Organization, the increasing antibiotic resistance of pathogens is one of the most important threats to human health. Prevalence of a carbapenem-resistance gene (KPC), vancomycin-resistance genes (van A/B) and a methicillin-resistance gene (mecA) in hospital and municipal sewages will be potential threat to public health. RESULTS: Vancomycin-resistance genes were detected in the sewage of community tank-II, sewage tank of the tertiary and general hospital. Carbapenem-resistance gene was detected in sewage of community tank-II and sewage from tertiary hospital. Methicillin-resistance gene was detected in sewage of community tank-II, sewage from a fish market sewage tank and sewage from an animal slaughter house sewage tank. The detection of a KPC, van A/B and a mecA in sewages will help further the process to take the appropriate measures to prevent the spread of such bacteria in the environment. | 2018 | 29335025 |
| 3934 | 6 | 0.9997 | Prevalence of antimicrobial resistance genes and its association with restricted antimicrobial use in food-producing animals: a systematic review and meta-analysis. BACKGROUND: There is ongoing debate regarding potential associations between restrictions of antimicrobial use and prevalence of antimicrobial resistance (AMR) in bacteria. OBJECTIVES: To summarize the effects of interventions reducing antimicrobial use in food-producing animals on the prevalence of AMR genes (ARGs) in bacteria from animals and humans. METHODS: We published a full systematic review of restrictions of antimicrobials in food-producing animals and their associations with AMR in bacteria. Herein, we focus on studies reporting on the association between restricted antimicrobial use and prevalence of ARGs. We used multilevel mixed-effects models and a semi-quantitative approach based on forest plots to summarize findings from studies. RESULTS: A positive effect of intervention [reduction in prevalence or number of ARGs in group(s) with restricted antimicrobial use] was reported from 29 studies for at least one ARG. We detected significant associations between a ban on avoparcin and diminished presence of the vanA gene in samples from animals and humans, whereas for the mecA gene, studies agreed on a positive effect of intervention in samples only from animals. Comparisons involving mcr-1, blaCTX-M, aadA2, vat(E), sul2, dfrA5, dfrA13, tet(E) and tet(P) indicated a reduced prevalence of genes in intervention groups. Conversely, no effects were detected for β-lactamases other than blaCTX-M and the remaining tet genes. CONCLUSIONS: The available body of scientific evidence supported that restricted use of antimicrobials in food animals was associated with an either lower or equal presence of ARGs in bacteria, with effects dependent on ARG, host species and restricted drug. | 2021 | 33146719 |
| 3297 | 7 | 0.9997 | Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies. | 2021 | 33919179 |
| 6603 | 8 | 0.9997 | Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers. | 2023 | 37394072 |
| 4978 | 9 | 0.9997 | Progresses on the prevalence and mechanism of vancomycin- resistant bacteria. Vancomycin, a glycopeptide antibiotic, serves as the last-resort treatment for infections caused by methicillin- resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and Clostridium difficile. However, the emergence of various vancomycin-resistant bacterial strains worldwide poses a significant challenge to clinical therapy. Adopting the "One Health" concept, we mainly present the prevalence of vancomycin-resistant bacteria over the past decade from 40 human, animal, environmental, and food sources across various regions, both domestically and internationally. The statistical results indicate that vancomycin-resistant bacteria are primarily concentrated in hospitals and their surrounding environments. The prevalence of resistant bacteria in hospital wastewater in South Africa reaches as high as 96.77%, followed by Pakistan and China's Taiwan region, where the resistance rates are 56.5% and 29.02%, respectively. The vancomycin average resistance rate in domestic human-source bacteria (1.41%) is overall higher than that in international human-source bacteria (0.47%). The prevalence of resistant bacteria in pediatric patients across various regions is relatively low (<1%). It is worth noting that although the use of vancomycin is prohibited in livestock farming, vancomycin- resistant bacteria can still be detected in livestock, related products and environment, posing a potential threat to human health. Based on the statistical analysis results, we summarize several common vancomycin resistance mechanisms and the transmission mechanisms, and clarify the differences in the prevalence of resistant bacteria across the "human-animal-food-environment" interface for further analyzing the distribution and transmission risks of vancomycin-resistant bacteria in different hosts worldwide. This review can also provide references for the prevention and control of antimicrobial resistance. | 2025 | 40528468 |
| 4994 | 10 | 0.9997 | Diving into the unknown: identification of antimicrobial resistance hotspots in a tropical urban estuary. Antimicrobial resistance is widely studied and well-characterized from a clinical perspective. However, considerably less information is available regarding resistance in environmental settings, especially in aquatic habitats. This study presents data regarding the occurrence, distribution and the antimicrobial susceptibility profile of bacteria isolated from Guanabara Bay (GB), a heavily polluted tropical urban estuary and an important tourist attraction in Rio de Janeiro, Brazil. Water samples from sites characterized by growing degrees of pollution were analysed by culture-dependent methods, revealing the presence of multidrug-resistant bacteria and clinically relevant indicators of antimicrobial resistance, such as extended-spectrum beta-lactamases. Isolates were identified by mass spectrometry, which indicated the presence of potential human pathogens such as Aeromonas spp. and Vibrio spp. Bacteria harbouring beta-lactam resistance genes were also detected. Although GB is widely used as a recreational and fishing area, there is a substantial knowledge gap regarding the monitoring of antimicrobial resistance and the risk that exposure to these waters poses to public health. Thus, this study reveals new information that calls for better comprehension of antimicrobial resistance in aquatic environments, especially those used for recreational purposes. | 2021 | 34146437 |
| 4979 | 11 | 0.9997 | Emerging threat: Antimicrobial resistance proliferation during epidemics - A case study of the SARS-CoV-2 pandemic in South Brazil. The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum β-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health. | 2024 | 38581873 |
| 2572 | 12 | 0.9997 | Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas. | 2020 | 32947947 |
| 1933 | 13 | 0.9997 | Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination. | 2022 | 36139170 |
| 3287 | 14 | 0.9997 | Antimicrobial resistance screening and profiles: a glimpse from the South African perspective. According to the Centre for Disease Dynamics Economics and Policy, South Africa represents a paradox of antibiotic management similar to other developing countries, with both overuse and underuse (resulting from lack of access) of antibiotics. In addition, wastewater reuse may contribute towards antibiotic resistance through selective pressure that increases resistance in native bacteria and on clinically relevant bacteria, increasing resistance profiles of the common pathogens. Sediments of surface water bodies and wastewater sludge provide a place where antibiotic resistance genes are transferred to other bacteria. Crop irrigation is thought to be a potential source of exposure to antibiotic-resistant bacteria through the transfer from the water or sludge into crops. The objectives of this study were to examine the antibiotic-resistance profiles of Escherishia coli from three agricultural locations in the Western Cape, South Africa. Using a classical microbiology culture approach, the resistance profiles of E. coli species isolated from river water and sediments, farm dams and their sediments and a passive algal wastewater treatment ponds and sediment used for crop irrigation were assessed for resistance to 13 commonly used antibiotics. Randomly selected E. coli isolates from the sediment and water were tested for resistance. 100% of E. coli isolates were resistant to sulphamethoxazole, highlighting its relevance in the South African context. In river water and farm dam samples, only the E. coli isolated from sediment were found to be resistant to fluoroquinolone or fluorifenicol. In the wastewater treatment ponds, the resistance profiles of E. coli isolated from sediments differed from those isolated from effluent, with 90% of the effluent isolates being resistant to ampicillin. Isolates from the sediment were less resistant (40%) to ampicillin, whereas all the isolates from the pond water and sediment samples were resistant to sulphamethoxazole. These results illustrate the importance of developing a better understanding of antibiotic resistance in agriculture and wastewater scenarios to ensure remedial measures take place where the greatest benefit can be realised especially in countries with limited financial and infrastructural resources. Moreover, the potential for passive algal treatment as an effective, feasible alternative for wastewater treatment is highlighted, with comparable resistance profiles and a reducing overall resistance in the sediment samples. | 2020 | 33328364 |
| 3462 | 15 | 0.9997 | Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. AIMS: The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS: In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS: Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide. | 2024 | 38627246 |
| 3285 | 16 | 0.9997 | Detection of fecal bacteria and antibiotic resistance genes in drinking water collected from three First Nations communities in Manitoba, Canada. This study analyzed the microbiological quality of drinking and source water from three First Nations communities in Manitoba, Canada that vary with respect to the source, storage and distribution of drinking water. Community A relies on an aquifer and Community B on a lake as source water to their water treatment plants. Community C does not have a water treatment plant and uses well water. Quantification of free residual chlorine and fecal bacterial (E. coli and coliforms), as well as detection of antibiotic resistance genes (sul, ampC, tet(A), mecA, vanA, blaSHV, blaTEM, blaCTX-M, blaOXA-1, blaCYM-2, blaKPC, blaOXA-48, blaNDM, blaVIM, blaGES and blaIMP) was carried out. While water treatment plants were found to be working properly, as post-treatment water did not contain E. coli or coliforms, once water entered the distribution system, a decline in the chlorine concentration with a concomitant increase in bacterial counts was observed. In particular, water samples from cisterns not only contained high number of E. coli and coliforms, but were also found to contain antibiotic resistance genes. This work shows that proper maintenance of the distribution and storage systems in First Nations communities is essential in order to provide access to clean and safe drinking water. | 2019 | 30980671 |
| 4998 | 17 | 0.9997 | Microbial Contamination and Antibiotic Resistance in Fresh Produce and Agro-Ecosystems in South Asia-A Systematic Review. Fresh produce prone to microbial contamination is a potential reservoir for antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), posing challenges to food safety and public health. This systematic review aims to comprehensively assess the prevalence of bacterial pathogens and the incidence of ARB/ARGs in fresh produce and agro-ecosystems across South Asia. Twenty-two relevant studies published between 2012 and 2022 from three major scientific databases and the grey literature were identified. The results revealed a wide occurrence of microbial contamination in various types of fresh produce across South Asia, with a predominance of E. coli (16/22), Salmonella spp. (13/22), Staphylococcus spp. (5/22), and Klebsiella spp. (4/22). The agro-ecosystem serves as a complex interface for microbial interactions; studies have reported the prevalence of E. coli (1/4), Salmonella spp. (1/4) and Listeria monocytogenes (1/4) in farm environment samples. A concerning prevalence of ARB has been reported, with resistance to multiple classes of antibiotics. The presence of ARGs in fresh produce underscores the potential for gene transfer and the emergence of resistant pathogens. To conclude, our review provides insights into the requirements of enhanced surveillance, collaborative efforts, implementation of good agricultural practices, and public awareness for food safety and safeguarding public health in the region. | 2024 | 39597656 |
| 4995 | 18 | 0.9997 | Carbapenem resistant Enterobacteriaceae from port areas in São Paulo State (Brazil): Isolation and molecular characterization. Coastal areas with important economic activities have high levels of contamination by metals, pathogenic bacteria, among other contaminants. The emergence of antibiotic-resistant bacteria is a global problem of public health. Carbapenem resistant Enterobacteriaceae (CRE) are a serious threat. The occurrence of carbapenem resistant bacteria was investigated in waters and sediments of a Brazilian coastal area, characterized by high levels of contamination. The samples of water and sediment were collected in two areas of the coast of São Paulo (Brazil). The study involved the characterization of the molecular mechanisms associated with the carbapenem resistance phenotype. No genes were detected for β-lactamases but the absence and/or presence of mutations in outer membrane proteins (OMPs) may justify the detected phenotype. The presented results show the need for further studies that allow a review of the current legislation and the importance of the reevaluation of monitoring policies of these environments. | 2020 | 32777543 |
| 1937 | 19 | 0.9997 | Antibiotic susceptibilities of enterococcus species isolated from hospital and domestic wastewater effluents in alice, eastern cape province of South Africa. BACKGROUND: Antimicrobial resistance in microorganisms are on the increase worldwide and are responsible for substantial cases of therapeutic failures. Resistance of species of Enterococcus to antibiotics is linked to their ability to acquire and disseminate antimicrobial resistance determinants in nature, and wastewater treatment plants (WWTPs) are considered to be one of the main reservoirs of such antibiotic resistant bacteria. We therefore determined the antimicrobial resistance and virulence profiles of some common Enterococcus spp that are known to be associated with human infections that were recovered from hospital wastewater and final effluent of the receiving wastewater treatment plant in Alice, Eastern Cape. METHODS: Wastewater samples were simultaneously collected from two sites (Victoria hospital and final effluents of a municipal WWTP) in Alice at about one to two weeks interval during the months of July and August 2014. Samples were screened for the isolation of enterococci using standard microbiological methods. The isolates were profiled molecularly after targeted generic identification and speciation for the presence of virulence and antibiotic resistance genes. RESULTS: Out of 66 presumptive isolates, 62 were confirmed to belong to the Enterococcus genusof which 30 were identified to be E. faecalis and 15 E. durans. The remaining isolates were not identified by the primers used in the screening procedure. Out of the six virulence genes that were targeted only three of them; ace, efaA, and gelE were detected. There was a very high phenotypic multiple resistance among the isolates and these were confirmed by genetic analyses. CONCLUSIONS: Analyses of the results obtained indicated that hospital wastewater may be one of the sources of antibiotic resistant bacteria to the receiving WWTP. Also, findings revealed that the final effluent discharged into the environment was contaminated with multi-resistant enterococci species thus posing a health hazard to the receiving aquatic environment as these could eventually be transmitted to humans and animals that are exposed to it. | 2015 | 25893999 |