# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3277 | 0 | 1.0000 | Airborne antibiotic resistome and human health risk in railway stations during COVID-19 pandemic. Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic. | 2023 | 36731187 |
| 7173 | 1 | 0.9999 | Animal farms are hot spots for airborne antimicrobial resistance. Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 10(2) to 10(4) copies/m(3) and was accompanied by a considerable intensity of MGEs and HPBs (approximately 10(3) copies/m(3)). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 10(2) in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 10(4) copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media. | 2022 | 35985594 |
| 3276 | 2 | 0.9998 | Deciphering risks of resistomes and pathogens in intensive laying hen production chain. Antimicrobial resistance (AMR) and pathogens derived from food animals and their associated environments have emerged as challenging threats to humans from a health perspective, but our understanding of these risks and their key prevention and control points in the current intensive breeding industry remains poor. By creating an integral composition and risk profile of the resistome and microbiome through metagenomics in feces, flies, dust, sewage, and soil along the four-stage laying hen production chain, we found that the whole production chain is a hotspot for antimicrobial resistance genes (ARGs) with 374 known subtypes and pathogens, including 157 human pathogenic bacteria (HPB). Feces and flies were identified as major risk sources for these contaminations. Also, we confirmed a twin-risk of AMR and pathogenicity prevailing throughout the chain, but with different frequencies in each stage; thus, high-risk ARGs in the young chicken stage and highly prioritized HPB in the chick stage contributed 37.33 % to the total AMR risk and 36.36 % to the pathogenic risks, respectively, thus rendering the two stages to be the key prevention points. Moreover, the prevalence of 112 binned ARG supercarriers (for example, Klebsiella pneumoniae harboring 20 ARGs) was unraveled along the production chain, especially in feces, flies, and dust, and 87 potential hosts exhibited high pathogenic risk, high-risk AMR, or both, with 262 ARGs and 816 virulence factor genes. Overall, this study provides first-hand comprehensive data on high-risk ARGs and their pathogenic hosts in the intensive laying hen production chain, and thus is fundamentally important for developing new measures to help control the global AMR crisis induced through the animal-environment-human pathway. | 2023 | 36702267 |
| 3208 | 3 | 0.9998 | Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China. Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (bla(KPC) and bla(VIM)) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying bla(CTX-M-55) were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. | 2025 | 40732167 |
| 3215 | 4 | 0.9998 | Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety. | 2025 | 40718809 |
| 3217 | 5 | 0.9998 | Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs. | 2025 | 39689477 |
| 6869 | 6 | 0.9998 | Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills. | 2025 | 39729867 |
| 3204 | 7 | 0.9998 | Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health. | 2022 | 34673316 |
| 7172 | 8 | 0.9998 | Airborne bacterial community and antibiotic resistome in the swine farming environment: Metagenomic insights into livestock relevance, pathogen hosts and public risks. Globally extensive use of antibiotics has accelerated antimicrobial resistance (AMR) in the environment. As one of the biggest antibiotic consumers, livestock farms are hotspots in AMR prevalence, especially those in the atmosphere can transmit over long distances and pose inhalation risks to the public. Here, we collected total suspended particulates in swine farms and ambient air of an intensive swine farming area. Bacterial communities and antibiotic resistomes were analyzed using amplicon and metagenomic sequencing approaches. AMR risks and inhalation exposure to potential human-pathogenic antibiotic-resistant bacteria (HPARB) were subsequently estimated with comparison to the reported hospital samples. The results show that swine farms shaped the airborne bacterial community by increasing abundances, reducing diversities and shifting compositions. Swine feces contributed 77% of bacteria to swine farm air, and about 35% to ambient air. Airborne antibiotic resistomes in swine farms mainly conferred resistance to tetracyclines, aminoglycosides and lincosamides, and over 48% were originated from swine feces. Distinct to the hospital air, Firmicutes were dominant bacteria in swine farming environments with conditional pathogens including Clostridium, Streptococcus and Aerococcus being major hosts of antibiotic resistance genes (ARGs). Therein, genomes of S. alactolyticus carrying (transposase/recombinase-associated) ARGs and virulence factor genes were retrieved from the metagenomes of all swine feces and swine farm air samples, but they were not detected in any hospital air samples. This suggests the indication of S. alactolyticus in swine farming environments with potential hazards to human health. Swine farm air faced higher AMR risks than hospital air and swine feces. The inhalation intake of HPARB by a swine farm worker was about three orders of magnitude higher than a person who works in the hospital. Consequently, this study depicted atmospheric transmission of bacteria and antibiotic resistomes from swine feces to the environment. | 2023 | 36680804 |
| 3176 | 9 | 0.9998 | Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces. | 2023 | 37742410 |
| 7317 | 10 | 0.9998 | Metagenomic surveillance of microbial community and antibiotic resistant genes associated with Malaysian wastewater during the COVID-19 pandemic. Wastewater is a reservoir of pathogens and hotspots for disseminating antibiotic resistance genes across species. The metagenomic surveillance of wastewater provides insight into the native microbial community, antibiotic-resistance genes (ARGs) and mobile genetic elements. t. The COVID-19 pandemic has caused wider dissemination of ARGs and resistant bacteria in wastewater. Although immensely significant, no research has been performed on the Malaysian wastewater microbial community and ARGs or their correlation with COVID-19 infections. This study utilised a 16S metagenomics approach to characterise the microbial community in Malaysian wastewater during high and low-case phases of the pandemic. Bacteria belonging to Bacteriodales, Bacillales, Actinomycetales and opportunistic pathogens-Arcobacters, Flavobacteria, and Campylobacterales, Neisseriales, were enriched during higher COVID-19 pandemic (active cases). Additionally, copy number profiling of ARGs in water samples showed the prevalence of elements conferring resistance to antibiotics like sulphonamides, cephalosporins, and colistin. The high prevalence of intI1 and other ion-based transporters in samples highlights an extensive risk of horizontal gene transfer to previously susceptible species. Our study emphasises the importance of wastewater surveillance in understanding microbial community dynamics and ARG dissemination, particularly during public health crises like the COVID-19 pandemic. | 2024 | 39724227 |
| 3187 | 11 | 0.9998 | Metagenomic Analysis of Antibiotic Resistance Genes in Untreated Wastewater From Three Different Hospitals. Controlling antibiotic resistance genes (ARGs) is a worldwide intervention to ensure global health. Hospital wastewater is the main pollution source of antibiotic-resistant bacteria and ARGs in the environment. Expanding our knowledge on the bacterial composition of hospital wastewater could help us to control infections in hospitals and decrease pathogen release into the environment. In this study, a high-throughput sequencing-based metagenomic approach was applied to investigate the community composition of bacteria and ARGs in untreated wastewater from three different types of hospitals [the general hospital, traditional Chinese medicine (TCM) hospital, and stomatology hospital]. In total, 130 phyla and 2,554 genera were identified from the microbiota of the wastewaters, with significantly different bacterial community compositions among the three hospitals. Total ARG analysis using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Resistance Database (CARD) revealed that the microbiota in the wastewaters from the three hospitals harbored different types and percentage of ARGs, and their composition was specific to the hospital type based on the correlation analysis between species and ARG abundance, some ARGs contributed to different bacterial genera with various relationships in different hospitals. In summary, our findings demonstrated a widespread occurrence of ARGs and ARG-harboring microbiota in untreated wastewaters of different hospitals, suggesting that protection measures should be applied to prevent human infections. Concurrently, hospital wastewater should be treated more specifically for the removal of pathogens before its discharge into the urban sewage system. | 2021 | 34504480 |
| 3183 | 12 | 0.9998 | The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. The emergence of antibiotic-resistant bacteria (ARB) caused by the overuse of antibiotics severely threatens human health. Hospital sewage may be a key transmission hub for ARB. However, the complex link between the microbiome and resistomeresistance in hospital sewage remains unclear. In this study, metagenomic assembly and binning methods were used to investigate the microbial community, resistome, and association of antibiotic resistance genes (ARGs) with ARB in sewage from 10 representative sites (outpatient building, surgery building, internal medicine buildings [IMB1-4], staff dormitory, laboratory animal building, tuberculosis building [TBB], and hospital wastewater treatment plant) of a hospital in Shanghai from June 2021 to February 2022. A total of 252 ARG subtypes, belonging to 17 antibiotic classes, were identified. The relative abundance of KPC-2 was higher at IMBs and TBB than at other sites. Of the ARG-carrying contigs, 47.3%-62.6% were associated with mobile genetic elements, and the proportion of plasmid-associated ARGs was significantly higher than that of chromosome-associated ARGs. Although a similar microbiome composition was shared, certain bacteria were enriched at different sites. Potential pathogens Enterococcus B faecium and Klebsiella pneumoniae were primarily enriched in IMB2 and IMB4, respectively. The same ARGs were identified in diverse bacterial hosts (especially pathogenic bacteria), and accordingly, the latter possessed multiple ARGs. Furthermore, gene flow was frequently observed in the sewage of different buildings. The results provide crucial information on the characterization profiles of resistomes in hospital sewage in Shanghai.IMPORTANCEEnvironmental antibiotic resistance genes (ARGs) play a critical role in the emergence and spread of antimicrobial resistance, which poses a global health threat. Wastewater from healthcare facilities serves as a significant reservoir for ARGs. Here, we characterized the microbial community along with the resistome (comprising all antibiotic resistance genes) in wastewater from a specialized hospital for infectious diseases in Shanghai. Potential pathogenic bacteria (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterococcus B faecium) were frequently detected in hospital wastewater and carried multiple ARGs. A complex link between microbiome and resistome was observed in the wastewater of this hospital. The monitoring of ARGs and antibiotic-resistant bacteria (ARB) in hospital wastewater might be of great significance for preventing the spread of ARB. | 2024 | 38132570 |
| 3216 | 13 | 0.9998 | Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols. | 2023 | 37119673 |
| 3206 | 14 | 0.9998 | High pollution and health risk of antibiotic resistance genes in rural domestic sewage in southeastern China: A study combining national-scale distribution and machine learning. Rural domestic sewage has emerged as an important reservoir of antibiotic resistance genes (ARGs) under rapid urbanization, while the national-scale geographical patterns and risks of ARGs remaining unclear. We investigated ARG pollution in rural domestic sewage across 39 sites in 22 Chinese provinces using metagenomic sequencing, identifying 702 ARG subtypes across 21 types. Multidrug resistance genes were predominant in the shared ARGs, accounting for 58.96 % of the total ARG abundance. Host bacteria analysis revealed Klebsiella pneumoniae and Escherichia coli were the main pathogenic-resistant bacteria. Southeastern China exhibited the highest level of ARG pollution in rural domestic sewage, followed by south-central, northern, and western. This ARG pollution was primarily caused by human/animal feces based on ARG indicators. Partial least-squares path model and partial redundancy analysis highlighted antibiotics as the primary driver, explaining 24.16 % of ARG variation, with sulfamethazine, norfloxacin, and ofloxacin identified as priority control targets. Risk assessment by calculating the risk index indicated 24.58 % of detected ARGs posed potential health threats, particularly multidrug resistance. Machine learning models predicted higher ARG risks in rural domestic sewage from southeastern China with intensive human activity. This study underscores the crucial impact of antibiotics in ARG proliferation and risk in rural domestic sewage. | 2025 | 40701495 |
| 3192 | 15 | 0.9998 | Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria. | 2021 | 34254820 |
| 3207 | 16 | 0.9998 | Dissemination of antibiotic resistance genes from aboveground sources to groundwater in livestock farms. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are prevalent in various environments on livestock farms, including livestock waste, soil, and groundwater. Contamination of groundwater by ARB and ARGs in livestock farms is a growing concern as it may have potentially huge risks to human health. However, the source of groundwater-borne ARB and ARGs in animal farms remains largely unknown. In this study, different types of samples including groundwater and its potential contamination sources from aboveground (pig feces, wastewater, and soil) from both working and abandoned swine feedlots in southern China were collected and subjected to metagenomic sequencing and ARB isolation. The source tracking based on metagenomic analysis revealed that 56-95 % of ARGs in groundwater was attributable to aboveground sources. Using metagenomic assembly, we found that 45 ARGs predominantly conferring resistance to aminoglycosides, sulfonamides, and tetracyclines could be transferred from the aboveground sources to groundwater, mostly through plasmid-mediated horizontal gene transfer. Furthermore, the full-length nucleotide sequences of sul1, tetA, and TEM-1 detected in ARB isolates exhibited the close evolutionary relationships between aboveground sources and groundwater. Some isolated strains of antibiotic-resistant Pseudomonas spp. from aboveground sources and groundwater had the high similarity (average nucleotide identity > 99 %). Notably, the groundwater-borne ARGs were identified as mainly carried by bacterial pathogens, potentially posing risks to human and animal health. Overall, this study underscores the dissemination of ARGs from aboveground sources to groundwater in animal farms and associated risks. | 2024 | 38598950 |
| 3136 | 17 | 0.9998 | Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion. | 2022 | 34990692 |
| 3219 | 18 | 0.9998 | Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. | 2016 | 27503629 |
| 3113 | 19 | 0.9998 | Resistome in the indoor dust samples from workplaces and households: a pilot study. The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals. | 2024 | 39691696 |