Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
324101.0000Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome.202032188862
322210.9999Differences in gut metagenomes between dairy workers and community controls: a cross-sectional study. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens as they undergo evolution prior to a spillover event. In light of this, we are interested in characterizing the microbiome and resistome of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of the human gut microbiome of 10 dairy farm workers and 6 community controls, supplementing these samples with additional publicly available gut metagenomes. We observed greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes in dairy workers' metagenomes, and lower average gene diversity. We also found evidence of commensal organism association with plasmid-mediated tetracycline resistance genes in both dairy workers and community controls (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). However, we did not find significant differences in the prevalence of resistance genes or virulence factors overall, nor differences in the taxonomic composition of dairy worker and community control metagenomes. CONCLUSIONS: This study presents the first metagenomics analysis of United States dairy workers, providing insights into potential risks of exposure to antibiotics and pathogens in animal farming environments. Previous metagenomic studies of livestock workers in China and Europe have reported increased abundance and carriage of antibiotic resistance genes in livestock workers. While our investigation found no strong evidence for differences in the abundance or carriage of antibiotic resistance genes and virulence factors between dairy worker and community control gut metagenomes, we did observe patterns in the abundance of tetracycline resistance genes and the prevalence of cephamycin resistance genes that is consistent with previous work.202337215025
747520.9999A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.202236121163
324230.9998A Cross-Sectional Study of Dairy Cattle Metagenomes Reveals Increased Antimicrobial Resistance in Animals Farmed in a Heavy Metal Contaminated Environment. The use of heavy metals in economic and social development can create an accumulation of toxic waste in the environment. High concentrations of heavy metals can damage human and animal health, lead to the development of antibiotic resistance, and possibly change in bovine microbiota. It is important to investigate the influence of heavy metals in food systems to determine potential harmful effects environmental heavy metal contamination on human health. Because of a mining dam rupture, 43 million cubic meters of iron ore waste flowed into the Doce river basin surrounding Mariana City, Brazil, in 2015. Following this environmental disaster, we investigated the consequences of long-term exposure to contaminated drinking water on the microbiome and resistome of dairy cattle. We identified bacterial antimicrobial resistance (AMR) genes in the feces, rumen fluid, and nasopharynx of 16 dairy cattle 4 years after the environmental disaster. Cattle had been continuously exposed to heavy metal contaminated water until sample collection (A) and compared them to analogous samples from 16 dairy cattle in an unaffected farm, 356 km away (B). The microbiome and resistome of farm A and farm B differed in many aspects. The distribution of genes present in the cattle's nasopharynx, rumen, and feces conferring AMR was highly heterogeneous, and most genes were present in only a few samples. The relative abundance and prevalence (presence/absence) of AMR genes were higher in farm A than in farm B. Samples from farm A had a higher prevalence (presence) of genes conferring resistance to multiple drugs, metals, biocides, and multi-compound resistance. Fecal samples had a higher relative abundance of AMR genes, followed by rumen fluid samples, and the nasopharynx had the lowest relative abundance of AMR genes detected. Metagenome functional annotation suggested that selective pressures of heavy metal exposure potentially skewed pathway diversity toward fewer, more specialized functions. This is the first study that evaluates the consequences of a Brazilian environmental accident with mining ore dam failure in the microbiome of dairy cows. Our findings suggest that the long-term persistence of heavy metals in the environment may result in differences in the microbiota and enrichment of antimicrobial-resistant bacteria. Our results also suggest that AMR genes are most readily detected in fecal samples compared to rumen and nasopharyngeal samples which had relatively lower bacterial read counts. Since heavy metal contamination has an effect on the animal microbiome, environmental management is warranted to protect the food system from hazardous consequences.202033304338
322340.9998A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.202439033279
740750.9998Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. BACKGROUND: Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS: The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS: Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.202439523335
325560.9998Early life dynamics of ARG and MGE associated with intestinal virome in neonatal piglets. The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.202236191572
324370.9998Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach. The bovine fecal microbiota impacts human food safety as well as animal health. Although the bacteria of cattle feces have been well characterized using culture-based and culture-independent methods, techniques have been lacking to correlate total community composition with community function. We used high throughput sequencing of total DNA extracted from fecal material to characterize general community composition and examine the repertoire of microbial genes present in beef cattle feces, including genes associated with antibiotic resistance and bacterial virulence. Results suggest that traditional 16S sequencing using "universal" primers to generate full-length sequence may under represent Acitinobacteria and Proteobacteria. Over eight percent (8.4%) of the sequences from our beef cattle fecal pool sample could be categorized as virulence genes, including a suite of genes associated with resistance to antibiotic and toxic compounds (RATC). This is a higher proportion of virulence genes found in Sargasso sea, chicken cecum, and cow rumen samples, but comparable to the proportion found in Antarctic marine derived lake, human fecal, and farm soil samples. The quantitative nature of metagenomic data, combined with the large number of RATC classes represented in samples from widely different habitats indicates that metagenomic data can be used to track relative amounts of antibiotic resistance genes in individual animals over time. Consequently, these data can be used to generate sample-specific and temporal antibiotic resistance gene profiles to facilitate an understanding of the ecology of the microbial communities in each habitat as well as the epidemiology of antibiotic resistant gene transport between and among habitats.201121167876
736580.9998A case study on the distribution of the environmental resistome in Korean shrimp farms. Hundreds of tons of antibiotics are widely used in aquaculture to prevent microbial infections and promote fish growth. However, the overuse of antibiotics and chemical products can lead to the selection and spreading of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), which are of great concern considering the threat to public health worldwide. Here, in-depth metagenome sequencing was performed to explore the environmental resistome and ARB distribution across farming stages in shrimp farms and examine anthropogenic effects in nearby coastal waters. A genome-centric analysis using a metagenome binning approach allowed us to accurately investigate the distribution of pathogens and ARG hosts in shrimp farms. The diversity of resistomes was higher in shrimp farms than in coastal waters, and the distribution of resistomes was dependent on the farming stage. In particular, the tetracycline resistance gene was found mainly at the early post-larval stage regardless of the farm. The metagenome-assembled genomes of Vibrio spp. were dominant at this stage and harbored tet34, which is known to confer resistance to oxytetracycline. In addition, opportunistic pathogens such as Francisella, Mycoplasma, Photobacterium, and Vibrio were found in abundance in shrimp farms, which had multiple virulence factors. This study highlights the increased resistance diversity and environmental selection of pathogens in shrimp farms. The use of environmental pollutants on farms may cause an increase in resistome diversity/abundance and the transmission of pathogens to the surrounding environment, which may pose future risks to public health and aquatic organisms.202134653940
325690.9998Co-localization of antibiotic resistance genes is widespread in the infant gut microbiome and associates with an immature gut microbial composition. BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract.202438730321
3239100.9998Antibiotic resistomes of healthy pig faecal metagenomes. Antibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)-1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics.201931091181
7108110.9998Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.201627095377
3238120.9998Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. BACKGROUND: Antimicrobial resistance (AMR) has been regarded as a major threat to global health. Pigs are considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of large-scale quantitative data on the distribution of ARGs in the pig production industry. The bacterial species integrated ARGs in the gut microbiome have not been clarified. RESULTS: In the present study, we used deep metagenomic sequencing data of 451 samples from 425 pigs including wild boars, Tibetan pigs, and commercial or cross-bred experimental pigs under different rearing modes, to comprehensively survey the diversity and distribution of ARGs and detect the bacteria integrated in these ARGs. We identified a total of 1295 open reading frames (ORFs) recognized as antimicrobial resistance protein-coding genes. The ORFs were clustered into 349 unique types of ARGs, and these could be further classified into 69 drug resistance classes. Tetracycline resistance was most enriched in pig feces. Pigs raised on commercial farms had a significantly higher AMR level than pigs under semi-free ranging conditions or wild boars. We tracked the changes in the composition of ARGs at different growth stages and gut locations. There were 30 drug resistance classes showing significantly different abundances in pigs between 25 and 240 days of age. The richness of ARGs and 41 drug resistance classes were significantly different between cecum lumen and feces in pigs from commercial farms, but not in wild boars. We identified 24 bacterial species that existed in almost all tested samples (core bacteria) and were integrated 128 ARGs in their genomes. However, only nine ARGs of these 128 ARGs were core ARGs, suggesting that most of the ARGs in these bacterial species might be acquired rather than constitutive. We selected three subsets of ARGs as indicators for evaluating the pollution level of ARGs in samples with high accuracy (r = 0.73~0.89). CONCLUSIONS: This study provides a primary overview of ARG profiles in various farms under different rearing modes, and the data serve as a reference for optimizing the use of antimicrobials and evaluating the risk of pollution by ARGs in pig farms. Video abstract.202235246246
3221130.9998Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.202336624546
7364140.9998Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. The abundance and dissemination of antibiotic resistance genes as emerging environmental contaminants have become a significant and growing threat to human and environmental health. Traditionally, investigations of antibiotic resistance have been confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. During the last decade it became evident that the environmental microbiota possesses an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. Recent studies demonstrate that aquatic ecosystems are potential reservoirs of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). Therefore, these aquatic ecosystems serve as potential sources for their transmission of ARGs to human pathogens. An assessment of such risks requires a better understanding of the level and variability of the natural resistance background and the extent of the anthropogenic impact. We have analyzed eight sediment samples from Sundarban mangrove ecosystem in India, collected at sampling stations with different histories of anthropogenic influences, and analyzed the relative abundance of the bla(TEM) gene using quantitative real-time PCR. The bla(TEM) gene abundance strongly correlated with the respective anthropogenic influences (polyaromatic hydrocarbon, heavy metals etc.) of the sampling stations. Besides, 18 multidrug-resistant (ampicillin, kanamycin, vancomycin, and tetracycline resistant) bacterial strains (ARBs) were isolated and characterized. Moreover, the effect of different antibiotics on the biofilm forming ability of the isolates was evaluated quantitatively under a variety of experimental regimes. This is the first report of preservation and possible dissemination of ARGs in the mangrove ecosystem.201930180366
3253150.9998Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species.202336760505
6589160.9998Differential Overlap in Human and Animal Fecal Microbiomes and Resistomes in Rural versus Urban Bangladesh. Low- and middle-income countries (LMICs) bear the largest mortality burden of antibiotic-resistant infections. Small-scale animal production and free-roaming domestic animals are common in many LMICs, yet data on zoonotic exchange of gut bacteria and antibiotic resistance genes (ARGs) in low-income communities are sparse. Differences between rural and urban communities with regard to population density, antibiotic use, and cohabitation with animals likely influence the frequency of transmission of gut bacterial communities and ARGs between humans and animals. Here, we determined the similarity in gut microbiomes, using 16S rRNA gene amplicon sequencing, and resistomes, using long-read metagenomics, between humans, chickens, and goats in a rural community compared to an urban community in Bangladesh. Gut microbiomes were more similar between humans and chickens in the rural (where cohabitation is more common) than the urban community, but there was no difference for humans and goats in the rural versus the urban community. Human and goat resistomes were more similar in the urban community, and ARG abundance was higher in urban animals than rural animals. We identified substantial overlap of ARG alleles in humans and animals in both settings. Humans and chickens had more overlapping ARG alleles than humans and goats. All fecal hosts from the urban community and rural humans carried ARGs on chromosomal contigs classified as potentially pathogenic bacteria, including Escherichia coli, Campylobacter jejuni, Clostridioides difficile, and Klebsiella pneumoniae. These findings provide insight into the breadth of ARGs circulating within human and animal populations in a rural compared to urban community in Bangladesh. IMPORTANCE While the development of antibiotic resistance in animal gut microbiomes and subsequent transmission to humans has been demonstrated in intensive farming environments and high-income countries, evidence of zoonotic exchange of antibiotic resistance in LMIC communities is lacking. This research provides genomic evidence of overlap of antibiotic resistance genes between humans and animals, especially in urban communities, and highlights chickens as important reservoirs of antibiotic resistance. Chicken and human gut microbiomes were more similar in rural Bangladesh, where cohabitation is more common. Incorporation of long-read metagenomics enabled characterization of bacterial hosts of resistance genes, which has not been possible in previous culture-independent studies using only short-read sequencing. These findings highlight the importance of developing strategies for combatting antibiotic resistance that account for chickens being reservoirs of ARGs in community environments, especially in urban areas.202235862660
3875170.9998Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture.202539752189
7372180.9998Variability of faecal microbiota and antibiotic resistance genes in flocks of migratory gulls and comparison with the surrounding environment. Gulls commonly rely on human-generated waste as their primary food source, contributing to the spread of antibiotic-resistant bacteria and their resistance genes, both locally and globally. Our understanding of this process remains incomplete, particularly in relation to its potential interaction with surrounding soil and water. We studied the lesser black-backed gull, Larus fuscus, as a model to examine the spatial variation of faecal bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) and its relationship with the surrounding water and soil. We conducted sampling campaigns within a connectivity network of different flocks of gulls moving across functional units (FUs), each of which represents a module of highly interconnected patches of habitats used for roosting and feeding. The FUs vary in habitat use, with some gulls using more polluted sites (notably landfills), while others prefer more natural environments (e.g., wetlands or beaches). Faecal bacterial communities in gulls from flocks that visit and spend more time in landfills exhibited higher richness and diversity. The faecal microbiota showed a high compositional overlap with bacterial communities in soil. The overlap was greater when compared to landfill (11%) than to wetland soils (6%), and much lower when compared to bacterial communities in surrounding water (2% and 1% for landfill and wetland water, respectively). The relative abundance of ARGs and MGEs were similar between FUs, with variations observed only for specific families of ARGs and MGEs. When exploring the faecal carriage of ARGs and MGEs in bird faeces relative to soil and water compartments, gull faeces were enriched in ARGs classified as High-Risk. Our results shed light on the complex dynamics of antibiotic resistance spread in wild bird populations, providing insights into the interactions among gull movement and feeding behavior, habitat characteristics, and the dissemination of antibiotic resistance determinants across environmental reservoirs.202439019307
7405190.9998Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Soil is one of the biggest reservoirs of microbial diversity, yet the processes that define the community dynamics are not fully understood. Apart from soil management being vital for agricultural purposes, it is also considered a favorable environment for the evolution and development of antimicrobial resistance, which is due to its high complexity and ongoing competition between the microorganisms. Different approaches to agricultural production might have specific outcomes for soil microbial community composition and antibiotic resistance phenotype. Therefore in this study we aimed to compare the soil microbiota and its resistome in conventional and organic farming systems that are continually influenced by the different treatment (inorganic fertilizers and pesticides vs. organic manure and no chemical pest management). The comparison of the soil microbial communities revealed no major differences among the main phyla of bacteria between the two farming styles with similar soil structure and pH. Only small differences between the lower taxa could be observed indicating that the soil community is stable, with minor shifts in composition being able to handle the different styles of treatment and fertilization. It is still unclear what level of intensity can change microbial composition but current conventional farming in Central Europe demonstrates acceptable level of intensity for soil bacterial communities. When the resistome of the soils was assessed by screening the total soil DNA for clinically relevant and soil-derived antibiotic resistance genes, a low variety of resistance determinants was detected (resistance to β-lactams, aminoglycosides, tetracycline, erythromycin, and rifampicin) with no clear preference for the soil farming type. The same soil samples were also used to isolate antibiotic resistant cultivable bacteria, which were predominated by highly resistant isolates of Pseudomonas, Stenotrophomonas, Sphingobacterium and Chryseobacterium genera. The resistance of these isolates was largely dependent on the efflux mechanisms, the soil Pseudomonas spp. relying mostly on RND, while Stenotrophomonas spp. and Chryseobacterium spp. on RND and ABC transporters.201931105678