# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3235 | 0 | 1.0000 | Vertical distribution of antibiotic resistance genes in an urban green facade. The phyllosphere is considered a key site for the transfer of both naturally and anthropogenically selected antimicrobial resistance genes (ARGs) to humans. Consequently, the development of green building systems may pose an, as yet, unexplored pathway for ARGs and pathogens to transfer from the environment to outdoor plants. We collected leaves from plants climbing up buildings at 1, 2, 4 and 15 m above ground level and collected associated dust samples from adjacent windowsills to determine the diversity and relative abundance of microbiota and ARGs. Overall, a total of 143 ARGs from 11 major classes and 18 mobile genetic elements (MGEs) were detected. The relative abundance of ARGs within the phyllosphere decreased with increasing height above ground level. Fast expectation-maximization microbial source tracking (FEAST) suggested that the contribution of soil and aerosols to the phyllosphere microbiome was limited. A culture-dependent method to isolate bacteria from plant tissues identified a total of 91 genera from root, stem, and leaf samples as well as endophytes isolated from leaves. Of those bacteria, 20 isolates representing 9 genera were known human pathogenic members to humans. Shared bacterial from culture-dependent and culture-independent methods suggest microorganisms may move from soil to plant, potentially through an endophytic mechanism and thus, there is a clear potential for movement of ARGs and human pathogens from the outdoor environment. | 2021 | 33721724 |
| 7293 | 1 | 0.9998 | Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination. | 2018 | 30420129 |
| 3238 | 2 | 0.9998 | Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. BACKGROUND: Antimicrobial resistance (AMR) has been regarded as a major threat to global health. Pigs are considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of large-scale quantitative data on the distribution of ARGs in the pig production industry. The bacterial species integrated ARGs in the gut microbiome have not been clarified. RESULTS: In the present study, we used deep metagenomic sequencing data of 451 samples from 425 pigs including wild boars, Tibetan pigs, and commercial or cross-bred experimental pigs under different rearing modes, to comprehensively survey the diversity and distribution of ARGs and detect the bacteria integrated in these ARGs. We identified a total of 1295 open reading frames (ORFs) recognized as antimicrobial resistance protein-coding genes. The ORFs were clustered into 349 unique types of ARGs, and these could be further classified into 69 drug resistance classes. Tetracycline resistance was most enriched in pig feces. Pigs raised on commercial farms had a significantly higher AMR level than pigs under semi-free ranging conditions or wild boars. We tracked the changes in the composition of ARGs at different growth stages and gut locations. There were 30 drug resistance classes showing significantly different abundances in pigs between 25 and 240 days of age. The richness of ARGs and 41 drug resistance classes were significantly different between cecum lumen and feces in pigs from commercial farms, but not in wild boars. We identified 24 bacterial species that existed in almost all tested samples (core bacteria) and were integrated 128 ARGs in their genomes. However, only nine ARGs of these 128 ARGs were core ARGs, suggesting that most of the ARGs in these bacterial species might be acquired rather than constitutive. We selected three subsets of ARGs as indicators for evaluating the pollution level of ARGs in samples with high accuracy (r = 0.73~0.89). CONCLUSIONS: This study provides a primary overview of ARG profiles in various farms under different rearing modes, and the data serve as a reference for optimizing the use of antimicrobials and evaluating the risk of pollution by ARGs in pig farms. Video abstract. | 2022 | 35246246 |
| 7325 | 3 | 0.9998 | Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks. | 2024 | 39500921 |
| 3234 | 4 | 0.9998 | Global profiling of antibiotic resistomes in maize rhizospheres. The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern. In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherlands, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop field. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotic-treated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility since mobile genetic elements were rarely found in their flanking regions. Notably, a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices. | 2023 | 36781495 |
| 7323 | 5 | 0.9998 | Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Aquatic ecosystems have been increasingly threatened by anthropogenic activities, e.g., wastewater discharge and farm operation. Several methods are adopted to evaluate the effects of anthropogenic activities on biological risk in the environment, such as qPCR and amplicon next-generation sequencing. However, these methods fall short of providing genomic information of target species, which is vital for risk assessment from genomic aspect. Here, we developed a novel approach integrating metagenomic analysis and flow cytometry to identify and quantify potential pathogenic antibiotic resistant bacteria (PARB; carrying both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs)) in the environment, which are of particular concern due to their infection ability and antibiotic resistance. Based on the abundance/density of PARB, we evaluated microbiological risk in a river impacted by both municipal drainage and agriculture runoff. We collected samples upstream (mountainous area) as the control. Results showed that 81.8% of dominant PARB (33) recovered using our approach were related to known pathogenic taxa. In addition, intragenomic ARGs-VFGs coexistence patterns in the dominant Pseudomonas genomes (20 out of 71 PARB) showed high similarity with the most closely related Pseudomonas genomes from the NCBI RefSeq database. These results reflect acceptable reliability of the approach for (potential) pathogen identification in environmental samples. According to the PARB density, microbiological risk in samples from the agricultural area was significantly higher than in samples from the urban area. We speculated that this was due to the higher antibiotic usage in agriculture as well as intragenomic ARGs-VFGs co-evolution under antibiotic selective pressure. This study provides an alternative approach for the identification and quantification of PARB in aquatic environments, which can be applied for microbiological risk assessment. | 2020 | 31614233 |
| 7407 | 6 | 0.9998 | Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. BACKGROUND: Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance. RESULTS: The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site. CONCLUSIONS: Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics. | 2024 | 39523335 |
| 3214 | 7 | 0.9998 | Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health. | 2020 | 32402966 |
| 7108 | 8 | 0.9998 | Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. | 2016 | 27095377 |
| 3136 | 9 | 0.9998 | Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion. | 2022 | 34990692 |
| 7414 | 10 | 0.9998 | Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption. | 2022 | 34864022 |
| 3219 | 11 | 0.9998 | Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. | 2016 | 27503629 |
| 3673 | 12 | 0.9998 | Origins and environmental mobility of antibiotic resistance genes, virulence factors and bacteria in a tidal creek's watershed. AIMS: To compare bacterial compositions of watershed run-offs released by a human settlement and a forested area, and to evaluate their role as carriers of antibiotic resistance and virulence genes. METHODS AND RESULTS: Run-offs from a forested area and a small settlement in a tidal creek' s watershed were compared for bacterial composition and profiles of 16 tetracycline resistance (TRG), eight virulence (VG) and integrase1 and 2 genes. Integrase 1 gene was detected only once. No integrase 2 gene was observed. VGs were detected only in settlement's run-offs, and TRG incidence frequency there was twice as high as in the forest's run-offs. Gene incidences revealed a positive correspondence to the rainfall, and weak correlations to water parameters. Metagenomic, Principle Coordinates and Shannon analyses together revealed distinctive bacterial compositions of the forest's and settlement's run-offs. Passage of the latter through a salt marsh resulted in the elimination of TRGs and three-fold decrease in VG incidence, and their bacterial composition was shifted towards that of the tidal creek. CONCLUSIONS: The settlement was a major source of TRGs and VGs in the watershed, but these contaminants were mitigated by a salt marsh system. SIGNIFICANCE AND IMPACT OF THE STUDY: Our data revealed the role of small settlements in biological contamination of the coastal waters. They also indicated that salt marshes are capable of reducing not only chemical but also biological contamination of run-offs. | 2015 | 25556404 |
| 7324 | 13 | 0.9998 | Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge. | 2020 | 32140141 |
| 7114 | 14 | 0.9998 | Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Point sources such as wastewater treatment plants, terrestrial agriculture, and aquaculture may release antibiotic residues, antibiotic resistant bacteria, and antibiotic resistance genes (ARGs) into aquatic ecosystems. However, there is a lack of quantitative studies attributing environmental ARG abundance to specific sources. The goal of this study was to evaluate the role of freshwater trout farms in the release and dissemination of ARGs into the environment. Sediment samples upstream and downstream from five rainbow trout farms were collected over time in southern Chile. A microfluidic quantitative polymerase chain reaction approach was used to quantify an ARG array covering different mechanisms of resistance, and data were analyzed using principal component analysis (PCA) and linear mixed regression models. Surveys were also conducted to obtain information about management practices, including antibiotic use, at the farms. Florfenicol and oxytetracycline were used at these farms, although at different rates. A total of 93 samples were analyzed. In the PCA, , , , , (A), (B), (C), (W), and grouped together. A statistically significant increase in abundance of , , , and several genes was found downstream from the farms compared with upstream sites, and retention ponds had the highest ARG abundance at each site. Antibiotic resistance gene levels returned to baseline at an average distance of 132.7 m downstream from the farms. Although results from this study indicate an influence of trout farms on the presence of ARGs in the immediate environment, the extent of their contribution to ARG dissemination is unknown and deserves further investigation. | 2019 | 31589726 |
| 3683 | 15 | 0.9998 | Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship. | 2018 | 30043816 |
| 6890 | 16 | 0.9998 | The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond. Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp (Ctenopharyngodon idellus) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture. | 2022 | 34817812 |
| 7365 | 17 | 0.9998 | A case study on the distribution of the environmental resistome in Korean shrimp farms. Hundreds of tons of antibiotics are widely used in aquaculture to prevent microbial infections and promote fish growth. However, the overuse of antibiotics and chemical products can lead to the selection and spreading of antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), which are of great concern considering the threat to public health worldwide. Here, in-depth metagenome sequencing was performed to explore the environmental resistome and ARB distribution across farming stages in shrimp farms and examine anthropogenic effects in nearby coastal waters. A genome-centric analysis using a metagenome binning approach allowed us to accurately investigate the distribution of pathogens and ARG hosts in shrimp farms. The diversity of resistomes was higher in shrimp farms than in coastal waters, and the distribution of resistomes was dependent on the farming stage. In particular, the tetracycline resistance gene was found mainly at the early post-larval stage regardless of the farm. The metagenome-assembled genomes of Vibrio spp. were dominant at this stage and harbored tet34, which is known to confer resistance to oxytetracycline. In addition, opportunistic pathogens such as Francisella, Mycoplasma, Photobacterium, and Vibrio were found in abundance in shrimp farms, which had multiple virulence factors. This study highlights the increased resistance diversity and environmental selection of pathogens in shrimp farms. The use of environmental pollutants on farms may cause an increase in resistome diversity/abundance and the transmission of pathogens to the surrounding environment, which may pose future risks to public health and aquatic organisms. | 2021 | 34653940 |
| 3215 | 18 | 0.9998 | Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety. | 2025 | 40718809 |
| 7107 | 19 | 0.9998 | A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment. | 2022 | 36009027 |