Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
32201.0000Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants. The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.201425244125
32310.9997Systemic acquired resistance delays race shifts to major resistance genes in bell pepper. ABSTRACT The lack of durability of host plant disease resistance is a major problem in disease control. Genotype-specific resistance that involves major resistance (R) genes is especially prone to failure. The compatible (i.e., disease) host-pathogen interaction with systemic acquired resistance (SAR) has been studied extensively, but the incompatible (i.e., resistant) interaction less so. Using the pepper-bacterial spot (causal agent, Xanthomonas axonopodis pv. vesicatoria) pathosystem, we examined the effect of SAR in reducing the occurrence of race-change mutants that defeat R genes in laboratory, greenhouse, and field experiments. Pepper plants carrying one or more R genes were sprayed with the plant defense activator acibenzolar-S-methyl (ASM) and challenged with incompatible strains of the pathogen. In the greenhouse, disease lesions first were observed 3 weeks after inoculation. ASM-treated plants carrying a major R gene had significantly fewer lesions caused by both the incompatible (i.e., hypersensitive) and compatible (i.e., disease) responses than occurred on nonsprayed plants. Bacteria isolated from the disease lesions were confirmed to be race-change mutants. In field experiments, there was a delay in the detection of race-change mutants and a reduction in disease severity. Decreased disease severity was associated with a reduction in the number of race-change mutants and the suppression of disease caused by the race-change mutants. This suggests a possible mechanism related to a decrease in the pathogen population size, which subsequently reduces the number of race-change mutants for the selection pressure of R genes. Thus, inducers of SAR are potentially useful for increasing the durability of genotype-specific resistance conferred by major R genes.200418943709
32520.9997Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance. The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.199319279805
8030.9996Virus infection induces resistance to Pseudomonas syringae and to drought in both compatible and incompatible bacteria-host interactions, which are compromised under conditions of elevated temperature and CO(2) levels. Plants are simultaneously exposed to a variety of biotic and abiotic stresses, such as infections by viruses and bacteria, or drought. This study aimed to improve our understanding of interactions between viral and bacterial pathogens and the environment in the incompatible host Nicotiana benthamiana and the susceptible host Arabidopsis thaliana, and the contribution of viral virulence proteins to these responses. Infection by the Potato virus X (PVX)/Plum pox virus (PPV) pathosystem induced resistance to Pseudomonas syringae (Pst) and to drought in both compatible and incompatible bacteria-host interactions, once a threshold level of defence responses was triggered by the virulence proteins P25 of PVX and the helper component proteinase of PPV. Virus-induced resistance to Pst was compromised in salicylic acid and jasmonic acid signalling-deficient Arabidopsis but not in N. benthamiana lines. Elevated temperature and CO(2) levels, parameters associated with climate change, negatively affected resistance to Pst and to drought induced by virus infection, and this correlated with diminished H(2)O(2) production, decreased expression of defence genes and a drop in virus titres. Thus, diminished virulence should be considered as a potential factor limiting the outcome of beneficial trade-offs in the response of virus-infected plants to drought or bacterial pathogens under a climate change scenario.202031730035
32640.9996Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. We performed large-scale mRNA expression profiling using an Affymetrix GeneChip to study Arabidopsis responses to the bacterial pathogen Pseudomonas syringae. The interactions were compatible (virulent bacteria) or incompatible (avirulent bacteria), including a nonhost interaction and interactions mediated by two different avirulence gene-resistance (R) gene combinations. Approximately 2000 of the approximately 8000 genes monitored showed reproducible significant expression level changes in at least one of the interactions. Analysis of biological variation suggested that the system behavior of the plant response in an incompatible interaction was robust but that of a compatible interaction was not. A large part of the difference between incompatible and compatible interactions can be explained quantitatively. Despite high similarity between responses mediated by the R genes RPS2 and RPM1 in wild-type plants, RPS2-mediated responses were strongly suppressed by the ndr1 mutation and the NahG transgene, whereas RPM1-mediated responses were not. This finding is consistent with the resistance phenotypes of these plants. We propose a simple quantitative model with a saturating response curve that approximates the overall behavior of this plant-pathogen system.200312566575
869950.9996Hordeum vulgare differentiates its response to beneficial bacteria. BACKGROUND: In nature, beneficial bacteria triggering induced systemic resistance (ISR) may protect plants from potential diseases, reducing yield losses caused by diverse pathogens. However, little is known about how the host plant initially responds to different beneficial bacteria. To reveal the impact of different bacteria on barley (Hordeum vulgare), bacterial colonization patterns, gene expression, and composition of seed endophytes were explored. RESULTS: This study used the soil-borne Ensifer meliloti, as well as Pantoea sp. and Pseudomonas sp. isolated from barley seeds, individually. The results demonstrated that those bacteria persisted in the rhizosphere but with different colonization patterns. Although root-leaf translocation was not observed, all three bacteria induced systemic resistance (ISR) against foliar fungal pathogens. Transcriptome analysis revealed that ion- and stress-related genes were regulated in plants that first encountered bacteria. Iron homeostasis and heat stress responses were involved in the response to E. meliloti and Pantoea sp., even if the iron content was not altered. Heat shock protein-encoding genes responded to inoculation with Pantoea sp. and Pseudomonas sp. Furthermore, bacterial inoculation affected the composition of seed endophytes. Investigation of the following generation indicated that the enhanced resistance was not heritable. CONCLUSIONS: Here, using barley as a model, we highlighted different responses to three different beneficial bacteria as well as the influence of soil-borne Ensifer meliloti on the seed microbiome. In total, these results can help to understand the interaction between ISR-triggering bacteria and a crop plant, which is essential for the application of biological agents in sustainable agriculture.202337789272
831660.9996Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages. Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed "quorum sensing" which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera.201627892495
32770.9996Natural variation in RPS2-mediated resistance among Arabidopsis accessions: correlation between gene expression profiles and phenotypic responses. Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied defense against Pseudomonas syringae pv tomato DC3000 (Pst), with a focus on resistance gene-mediated resistance triggered by the type III effector protein AvrRpt2. As phenotypic traits, we measured growth of the bacteria and extent of the hypersensitive response (HR) as measured by electrolyte leakage. Genetic variation among accessions affected growth of Pst both with (Pst avrRpt2) and without (Pst) the AvrRpt2 effector. Variation in HR was not correlated with variation in bacterial growth. We also collected gene expression profiles 6 h after mock and Pst avrRpt2 inoculation using a custom microarray. Clusters of genes whose expression levels are correlated with bacterial growth or electrolyte leakage were identified. Thus, we demonstrated that variation in gene expression profiles of Arabidopsis accessions collected at one time point under one experimental condition has the power to explain variation in phenotypic responses to pathogen attack.200718083910
8180.9996Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.201222432714
7990.9996A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. SUMMARY Members of the GRAS family of transcriptional regulators have been implicated in the control of plant growth and development, and in the interaction of plants with symbiotic bacteria. Here we examine the complexity of the GRAS gene family in tomato (Solanum lycopersicum) and investigate its role in disease resistance and mechanical stress. A large number of tomato ESTs corresponding to GRAS transcripts were retrieved from the public database and assembled in 17 contigs of putative genes. Expression analysis of these genes by real-time RT-PCR revealed that six SlGRAS transcripts accumulate during the onset of disease resistance to Pseudomonas syringae pv. tomato. Further analysis of two selected family members showed that their transcripts preferentially accumulate in tomato plants in response to different avirulent bacteria or to the fungal elicitor EIX, and their expression kinetics correlate with the appearance of the hypersensitive response. In addition, transcript levels of eight SlGRAS genes, including all the Pseudomonas-inducible family members, increased in response to mechanical stress much earlier than upon pathogen attack. Accumulation of SlGRAS transcripts following mechanical stress was in part dependent on the signalling molecule jasmonic acid. Remarkably, suppression of SlGRAS6 gene expression by virus-induced gene silencing impaired tomato resistance to P. syringae pv. tomato. These results support a function for GRAS transcriptional regulators in the plant response to biotic and abiotic stress.200620507472
8323100.9996The impact of environmental stress on Listeria monocytogenes virulence. Listeria monocytogenes, a significant food-borne pathogen, must defy a variety of conditions encountered in the food environment and during the infection process. In reaction to adverse conditions, the bacteria significantly change their metabolism, inducing a stress response which is mediated by a range of alternative sigma factors. The extent of the response to stress was shown to vary in the L. monocytogenes population. According to recent evidence a major L. monocytogenes alternative sigma factor, designated sigma B (sigma B), regulates some virulence genes in response to stress, which supports an older hypothesis that stress-resistant strains should be more pathogenic. The induction of sigma B-dependent genes may also be important from the point of view of food hygiene. It seems that stress response activation can paradoxically enhance resistance to agents used in food preservation. Therefore, monitoring the expression of sigma B-dependent genes can serve as a useful marker to assess the innate resistance of L. monocytogenes strains. This knowledge will allow the design of new methods with sequential preservation steps that could inactivate the bacteria without inducing their stress response.200920169937
8315110.9996The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses.200011701843
9198120.9995Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases? One of the recent exciting developments in the research area of plant-microbe interactions is a breakthrough in understanding part of the initial signalling between avirulent Gram-negative bacteria and resistant plants. For resistance to occur, both interacting organisms need to express matching genes, the plant resistance gene and the bacterial avirulence gene. The biochemical function of bacterial avirulence genes and the nature of the signal molecules recognized by the plant have been a mystery for a long time. Recently, several laboratories have shown that bacterial avirulence proteins function as elicitors that are perceived within the plant cell.19979263447
8252130.9995Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Sustainable agriculture necessitates development of environmentally safe methods to protect plants against pathogens. Among these methods, application of biocontrol agents has been efficiently used to minimize disease development. Here we review current understanding of mechanisms involved in biocontrol of the main Gram-phytopathogenic bacteria-induced diseases by plant inoculation with strains mutated in hrp (hypersensitive response and pathogenicity) genes. These mutants are able to penetrate plant tissues and to stimulate basal resistance of plants. Novel protection mechanisms involving the phytohormone abscisic acid appear to play key roles in the biocontrol of wilt disease induced by Ralstonia solanacearum in Arabidopsis thaliana. Fully understanding these mechanisms and extending the studies to other pathosystems are still required to evaluate their importance in disease protection.201323887499
324140.9995Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. A capillary electrophoresis-based method for quantitation of total salicylic acid levels in Arabidopsis leaves was developed. Direct comparison to previous high-performance liquid chromatography (HPLC)-based measurements showed similar levels of salicylic acid. Simultaneous quantitation of trans-cinnamic acid, benzoic acid, sinapic acid, and an internal recovery standard was achieved. A rapid, streamlined protocol with requirements for plant tissue reduced relative to those of HPLC-based protocols is presented. Complicated, multiparameter experiments were thus possible despite the labor-intensive nature of inoculating plants with bacterial pathogens. As an example of this sort of experiment, detailed time course studies of total salicylic acid accumulation by wild-type Arabidopsis and two lines with mutations affecting salicylic acid accumulation in response to either of two avirulent bacterial strains were performed. Accumulation in the first 12h was biphasic. The first phase was partially SID2 and NDR1 dependent with both bacterial strains. The second phase was largely independent of both genes with bacteria carrying avrB, but dependent upon both genes with bacteria carrying avrRpt2. Virulent bacteria did not elicit salicylic acid accumulation at these time points. Application of this method to various Arabidopsis pathosystems and the wealth of available disease resistance signaling mutants will refine knowledge of disease resistance and associated signal transduction.200312927828
686150.9995SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. One of the strongest and most noticeable responses of Bacillus subtilis cells to a range of stress and starvation stimuli is the dramatic induction of about 150 SigB-dependent general stress genes. The activity of SigB itself is tightly regulated by a complex signal transduction cascade with at least three main signaling pathways that respond to environmental stress, energy depletion, or low temperature. The SigB-dependent response is conserved in related gram-positive bacteria but is missing in strictly anaerobic or in some facultatively anaerobic gram-positive bacteria. It covers functions from nonspecific and multiple stress resistance to the control of virulence in pathogenic bacteria. A comprehensive understanding of this crucial stress response is essential not only for bacterial physiology but also for applied microbiology, including pathogenicity and pathogen control.200718035607
8789160.9995Herbivore Oral Secreted Bacteria Trigger Distinct Defense Responses in Preferred and Non-Preferred Host Plants. Insect symbiotic bacteria affect host physiology and mediate plant-insect interactions, yet there are few clear examples of symbiotic bacteria regulating defense responses in different host plants. We hypothesized that plants would induce distinct defense responses to herbivore- associated bacteria. We evaluated whether preferred hosts (horsenettle) or non-preferred hosts (tomato) respond similarly to oral secretions (OS) from the false potato beetle (FPB, Leptinotarsa juncta), and whether the induced defense triggered by OS was due to the presence of symbiotic bacteria in OS. Both horsenettle and tomato damaged by antibiotic (AB) treated larvae showed higher polyphenol oxidase (PPO) activity than those damaged by non-AB treated larvae. In addition, application of OS from AB treated larvae induced higher PPO activity compared with OS from non-AB treated larvae or water treatment. False potato beetles harbor bacteria that may provide abundant cues that can be recognized by plants and thus mediate corresponding defense responses. Among all tested bacterial isolates, the genera Pantoea, Acinetobacter, Enterobacter, and Serratia were found to suppress PPO activity in tomato, while only Pantoea sp. among these four isolates was observed to suppress PPO activity in horsenettle. The distinct PPO suppression caused by symbiotic bacteria in different plants was similar to the pattern of induced defense-related gene expression. Pantoea inoculated FPB suppressed JA-responsive genes and triggered a SA-responsive gene in both tomato and horsenettle. However, Enterobacter inoculated FPB eliminated JA-regulated gene expression and elevated SA-regulated gene expression in tomato, but did not show evident effects on the expression levels of horsenettle defense-related genes. These results indicate that suppression of plant defenses by the bacteria found in the oral secretions of herbivores may be a more widespread phenomenon than previously indicated.201627294415
8865170.9995Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection. Resistance to bacteriophage infections protects bacteria in phage-replete environments, enabling them to survive and multiply in the presence of their viral predators. However, such resistance may confer costs for strains, reducing their ecological fitness as expressed as competitiveness for resources or virulence or both. There is limited knowledge about such costs paid by phage-resistant plant pathogenic bacteria in their natural habitats. This study analyzed the costs of phage resistance paid by the phytopathogenic pectinolytic bacterium Dickeya solani both in vitro and in potato (Solanum tuberosum L.) plants. Thirteen Tn5 mutants of D. solani IPO 2222 were identified that exhibited resistance to infection by lytic bacteriophage vB_Dsol_D5 (ΦD5). The genes disrupted in these mutants encoded proteins involved in the synthesis of bacterial envelope components (viz. LPS, EPS and capsule). Although phage resistance did not affect most of the phenotypes of ΦD5-resistant D. solani such as growth rate, production of effectors, swimming and swarming motility, use of various carbon and nitrogen sources and biofilm formation evaluated in vitro, all phage resistant mutants were significantly compromised in their ability to survive on leaf surfaces as well as to grow within and cause disease symptoms in potato plants.202235750797
8773180.9995Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato. A plant growth-promoting bacteria, Azospirillum sp. B510, isolated from rice, can enhance growth and yield and induce disease resistance against various types of diseases in rice. Because little is known about the interaction between other plant species and this strain, we have investigated the effect of its colonization on disease resistance in tomato plants. Treatment with this strain by soil-drenching method established endophytic colonization in root tissues in tomato plant. The endophytic colonization with this strain-induced disease resistance in tomato plant against bacterial leaf spot caused by Pseudomonas syringae pv. tomato and gray mold caused by Botrytis cinerea. In Azospirillum-treated plants, neither the accumulation of SA nor the expression of defense-related genes was observed. These indicate that endophytic colonization with Azospirillum sp. B510 is able to activate the innate immune system also in tomato, which does not seem to be systemic acquired resistance.201728569642
687190.9995RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.202338139177