# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3219 | 0 | 1.0000 | Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. | 2016 | 27503629 |
| 3218 | 1 | 0.9999 | Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were bla(TEM), tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH(3) and H(2)S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH(3) and H(2)S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter. | 2022 | 35850323 |
| 3216 | 2 | 0.9999 | Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols. | 2023 | 37119673 |
| 3217 | 3 | 0.9999 | Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs. | 2025 | 39689477 |
| 7293 | 4 | 0.9999 | Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination. | 2018 | 30420129 |
| 3215 | 5 | 0.9999 | Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety. | 2025 | 40718809 |
| 7413 | 6 | 0.9999 | Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies. | 2023 | 37434056 |
| 7108 | 7 | 0.9999 | Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents. | 2016 | 27095377 |
| 3214 | 8 | 0.9999 | Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health. | 2020 | 32402966 |
| 3205 | 9 | 0.9999 | Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy. | 2022 | 35033551 |
| 7109 | 10 | 0.9999 | Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures. | 2025 | 40232101 |
| 7107 | 11 | 0.9998 | A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment. | 2022 | 36009027 |
| 3136 | 12 | 0.9998 | Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Fresh vegetables are considered as a reservoir of pathogenic bacteria and antibiotic resistance genes (ARGs), which are the emerging environmental contaminants, posing increasing concerned risk to human health. However, the prevalence of pathogens in phyllosphere of fresh vegetables, as well as the association of ARGs with pathogenic bacteria, have not been well elaborated. In this study, we explored the structure of microbial communities and ARGs through high-throughput quantitative PCR and 16S rRNA gene Illumina sequencing, and characterized the microorganisms resisting to antibiotics by pure culture. From phyllosphere of six different kinds of vegetables, 205 ARGs were detected and genes for multidrug resistance was the most abundant. The predominant potential pathogens were classified to Pseudomonas, Klebsiella, and Acinetobacter genera, which carried various ARGs such as multidrug and beta-lactam resistance genes presumedly. Among six kinds of vegetables, Lactuca sativa var. asparagina carried the highest abundance of potential pathogens and ARGs, while Allium sativum L harbored the lowest abundance of pathogens and ARGs. In addition, various culturable bacteria resisting to colistin or meropenem could be isolated from all vegetables, remarkably, all the isolates resistant to both antibiotics are potential pathogens. Our study highlighted the risks of pathogens and ARGs from raw vegetables to consumers, characterized their structure patterns among different vegetables, and analyzed the potential mechanisms regulating phyllosphere pathogens and resistome of fresh vegetables, which would be helpful for reducing the microbial risk from vegetable ingestion. | 2022 | 34990692 |
| 3212 | 13 | 0.9998 | Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH(4)(+)-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments. | 2022 | 35934031 |
| 6845 | 14 | 0.9998 | A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. In this study, we evaluated the microbiome and the resistome profile of water and fragments of polyethylene (PE) waste collected at the same time from a stream and the seawater in a coastal area of Northwestern Sicily. Although a core microbiome was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA gene, quantitative differences were found among the microbial communities on PE waste and the corresponding water samples. Our findings indicated that PE waste contains a more abundant and increased core microbiome diversity than the corresponding water samples. Moreover, PCR analysis of specific antibiotic resistance genes (ARGs) showed that PE waste harbors more ARGs than the water samples. Thus, PE waste could act as a carrier of antibiotic-resistant microbiota, representing an increased danger for the marine environment and living organisms, as well. | 2021 | 33800749 |
| 7110 | 15 | 0.9998 | The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms. INTRODUCTION: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance. METHODS: A guideline focused on prudent antibiotic use, selective therapy, and hygienic and immune-prophylactic practices was developed and provided to the owners of 10 selected dairy farms and their veterinarians. Fecal samples were collected from lactating cows, dry cows, and calves both before and after the implementation of the guideline. ARGs (bla (TEM), ermB, sul2, and tetA) were initially screened by end-point PCR, followed by quantification using digital droplet PCR. ARG abundance was expressed in relative terms by dividing the copy number of ARGs by the copy number of the 16S rRNA gene. RESULTS: The ARG abundances were higher in lactating cows compared to other categories. Despite similar levels of antibiotic administration (based on veterinary prescription data from the sampled farms) in both sampling campaigns, the total abundance of selected ARGs, particularly bla (TEM) and tetA, significantly decreased after the adoption of the farming guidelines. DISCUSSION: This study highlights the positive impact of prudent antibiotic use and the implementation of farming best practices in reducing the abundance of ARGs. The lactating cow category emerged as a crucial point of intervention for reducing the spread of antibiotic resistance. These findings contribute to ongoing efforts to address antibiotic resistance in farm environments and strengthen the evidence supporting the adoption of good farming practices. | 2024 | 39840338 |
| 7114 | 16 | 0.9998 | Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Point sources such as wastewater treatment plants, terrestrial agriculture, and aquaculture may release antibiotic residues, antibiotic resistant bacteria, and antibiotic resistance genes (ARGs) into aquatic ecosystems. However, there is a lack of quantitative studies attributing environmental ARG abundance to specific sources. The goal of this study was to evaluate the role of freshwater trout farms in the release and dissemination of ARGs into the environment. Sediment samples upstream and downstream from five rainbow trout farms were collected over time in southern Chile. A microfluidic quantitative polymerase chain reaction approach was used to quantify an ARG array covering different mechanisms of resistance, and data were analyzed using principal component analysis (PCA) and linear mixed regression models. Surveys were also conducted to obtain information about management practices, including antibiotic use, at the farms. Florfenicol and oxytetracycline were used at these farms, although at different rates. A total of 93 samples were analyzed. In the PCA, , , , , (A), (B), (C), (W), and grouped together. A statistically significant increase in abundance of , , , and several genes was found downstream from the farms compared with upstream sites, and retention ponds had the highest ARG abundance at each site. Antibiotic resistance gene levels returned to baseline at an average distance of 132.7 m downstream from the farms. Although results from this study indicate an influence of trout farms on the presence of ARGs in the immediate environment, the extent of their contribution to ARG dissemination is unknown and deserves further investigation. | 2019 | 31589726 |
| 7106 | 17 | 0.9998 | The swine waste resistome: Spreading and transfer of antibiotic resistance genes in Escherichia coli strains and the associated microbial communities. The overuse of antimicrobials in livestock farming has led to the development of resistant bacteria and the spread of antibiotic-resistant genes (ARGs) among animals. When manure containing these antibiotics is applied to agricultural fields, it creates a selective pressure that promotes the acquisition of ARGs by bacteria, primarily through horizontal gene transfer. Most research on ARGs focuses on their role in clinical antibiotic resistance and their transfer from environmental sources to bacteria associated with humans, such as Escherichia coli. The study investigates the spread of antibiotic-resistant genes (ARGs) through class 1 integrons in 27 Escherichia coli strains from pig manure. It focuses on six common ARGs (ermB, cmlA, floR, qnrS, tetA, and TEM) and the class 1 integron gene, assessing their prevalence in manure samples from three pig farms. The study found correlations and anticorrelations among these genes, indicating a predisposition of the integron in spreading certain ARGs. Specifically, cmlA and tetA genes were positively correlated with each other and negatively with int1, suggesting they are not transferred via Int1. Farm B had the highest int1 counts and a higher abundance of the TEM gene, but lower levels of cmlA and tetA genes. The results underscore the complexity of predicting ARG spread in agricultural environments and the associated health risks to humans through the food chain. The study's results offer valuable insights into the antibiotic-resistant genes (ARGs) profile in swine livestock, potentially aiding in the development of methods to trace ARGs in the environment. | 2024 | 39053184 |
| 7113 | 18 | 0.9998 | Stormwater loadings of antibiotic resistance genes in an urban stream. Antibiotic resistance presents a critical public health challenge and the transmission of antibiotic resistance via environmental pathways continues to gain attention. Factors driving the spread of antibiotic resistance genes (ARGs) in surface water and sources of ARGs in urban stormwater have not been well-characterized. In this study, five ARGs (sul1, sul2, tet(O), tet(W), and erm(F)) were quantified throughout the duration of three storm runoff events in an urban inland stream. Storm loads of all five ARGs were significantly greater than during equivalent background periods. Neither fecal indicator bacteria measured (E. coli or enterococci) was significantly correlated with sul1, sul2, or erm(F), regardless of whether ARG concentration was absolute or normalized to 16S rRNA levels. Both E. coli and enterococci were correlated with the tetracycline resistance genes, tet(O) and tet(W). Next-generation shotgun metagenomic sequencing was conducted to more thoroughly characterize the resistome (i.e., full complement of ARGs) and profile the occurrence of all ARGs described in current databases in storm runoff in order to inform future watershed monitoring and management. Between 37 and 121 different ARGs were detected in each stream sample, though the ARG profiles differed among storms. This study establishes that storm-driven transport of ARGs comprises a considerable fraction of overall downstream loadings and broadly characterizes the urban stormwater resistome to identify potential marker ARGs indicative of impact. | 2017 | 28662396 |
| 7284 | 19 | 0.9998 | Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. | 2015 | 25913323 |