Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
321601.0000Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols.202337119673
321710.9999Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs.202539689477
321920.9999Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination.201627503629
684530.9999A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. In this study, we evaluated the microbiome and the resistome profile of water and fragments of polyethylene (PE) waste collected at the same time from a stream and the seawater in a coastal area of Northwestern Sicily. Although a core microbiome was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA gene, quantitative differences were found among the microbial communities on PE waste and the corresponding water samples. Our findings indicated that PE waste contains a more abundant and increased core microbiome diversity than the corresponding water samples. Moreover, PCR analysis of specific antibiotic resistance genes (ARGs) showed that PE waste harbors more ARGs than the water samples. Thus, PE waste could act as a carrier of antibiotic-resistant microbiota, representing an increased danger for the marine environment and living organisms, as well.202133800749
321840.9999Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were bla(TEM), tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH(3) and H(2)S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH(3) and H(2)S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter.202235850323
321550.9999Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety.202540718809
350960.9999Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. More attention has been paid to the abundance and diversity of antibiotic resistance genes (ARGs) in aquatic environments. However, few studies have investigated the persistence and spatial variation of ARGs in aquatic organisms. This study investigated the occurrence and abundance of ARGs and the bacterial populations in shrimp intestinal tracts during the rearing period in different regions of Guangdong, South China. The results showed that sul1, sul2, qnrD, and floR were the predominant ARGs. Compared with those of juvenile shrimp, the total concentrations of ARGs in the intestinal tract of adult shrimp in three shrimp farms were 2.45-3.92 times higher (p < 0.05), and the bacterial populations in the adult shrimp intestinal tract changed considerably. Redundancy analysis (RDA) showed that the abundance of Proteobacteria, Firmicutes, and Verrucomicrobia in Farms A, B, and C, respectively, were strongly positively correlated with the most abundant and predominant genes (sul1 and qnrD for Farm A; floR and sul2 for Farm B; floR and sul2 for Farm C) in the shrimp intestinal tract. The results of this study indicated that ARGs gained persistence in the developmental stages of the reared shrimp. Different phyla of predominant bacteria were responsible for the increase of ARGs abundance in the shrimp intestinal tract in different regions. This study represents a case study of the persistence and spatial variation of ARGs in aquaculture and can be a reference for the determination of harmful impacts of ARGs on food safety and human health.201829990953
321270.9999Distribution and driving factors of antibiotic resistance genes in treated wastewater from different types of livestock farms. Treated wastewater from livestock farms is an important reservoir for antibiotic resistance genes (ARGs), and is a main source of ARGs in the environment. However, the distribution and driving factors of ARGs in treated wastewater from different types of livestock farms are rarely reported. In this study, treated wastewater from 69 large-scale livestock farms of different types, including broiler, layer, and pig farms, was collected, and 11 subtypes of ARGs, 2 mobile genetic elements (MGEs) and bacterial community structure were analyzed. The results revealed detection rates of NDM-1 and mcr-1 of 90 % and 43 %, respectively, and the detection rates of other ARGs were 100 %. The relative abundance of ARGs, such as tetA, tetX and strB, in broiler farms was significantly higher than that in layer farms, but the bacterial α diversity was significantly lower than that in other farm types. Furthermore, although the treatment process had a greater impact on the physicochemical properties of the treated wastewater than the livestock type, livestock type was the main factor affecting the bacterial community in the treated wastewater. The analysis of potential host bacteria of ARGs revealed significant differences in the host bacteria of ARGs in treated wastewater from different types of livestock farms. The host bacteria of ARGs in broiler farms mainly belonged to Actinobacteria, layer farms mainly belonged to Proteobacteria, and pig farms mainly belonged to Firmicutes. Additionally, redundancy analysis showed that the distribution of ARGs may have resulted from the combination of multiple driving factors in different types of livestock farms, among which tnpA and NH(4)(+)-N were the main influencing factors. This study revealed multiple driving factors for the distribution of typical ARGs in treated wastewater from different types of livestock farms, providing basic data for the prevention and control of ARG pollution in agricultural environments.202235934031
320580.9999Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy.202235033551
321490.9998Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.202032402966
7293100.9998Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination.201830420129
3111110.9998The abundance and diversity of antibiotic resistance genes in layer chicken ceca is associated with farm enviroment. Industrialized layer chicken feedlots harbor complex environmental microbial communities that affect the enrichment and exchange of gut bacteria and antibiotic resistance genes (ARGs). However, the contribution of different environmental sources to the gut ARGs of layer chickens is not clear. Here, layer chicken gut and environmental samples (air, water, feed, cage, feather, maternal hen feces, uropygial glands) were collected during the early 3 month period before the laying of eggs, and the source and characteristics of the gut microorganisms and ARGs were analyzed by performing 16S rRNA and metagenomic sequencing. The results showed that the abundances of Bacteroidetes and Actinobacteria in cecum of layer chickens gradually increased, while that of Proteobacteria decreased with age, and the number and relative abundance of ARGs decreased significantly with age. On day 5, 57% of the layer chicken cecal ARGs were from feather samples, and 30% were from cage samples. Subsequently, the contribution of cage ARGs became progressively more prominent over time. At days 30 and 57, the contribution of cage ARGs to the chick cecal ARGs reached 63.3 and 69.5%, respectively. The bacterial community composition (especially the abundances of Klebsiella pneumoniae and Escherichia coli) was the major factor impacting the ARG profile. K. pneumoniae and E. coli were mainly transmitted from feathers to the layer chicken cecum, and the contribution rates were 32 and 3.4%, respectively. In addition, we observed the transmission of ARG-carrying bacteria (Bacteroides fragilis) from the cage to the gut, with a contribution rate of 11.5%. It is noteworthy that B. fragilis is an opportunistic pathogen that may cause diarrhea in laying hens. These results can provide reference data for the healthy breeding of layer chickens and the prevention and control of ARG pollution.202337455745
3238120.9998Extensive metagenomic analysis of the porcine gut resistome to identify indicators reflecting antimicrobial resistance. BACKGROUND: Antimicrobial resistance (AMR) has been regarded as a major threat to global health. Pigs are considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of large-scale quantitative data on the distribution of ARGs in the pig production industry. The bacterial species integrated ARGs in the gut microbiome have not been clarified. RESULTS: In the present study, we used deep metagenomic sequencing data of 451 samples from 425 pigs including wild boars, Tibetan pigs, and commercial or cross-bred experimental pigs under different rearing modes, to comprehensively survey the diversity and distribution of ARGs and detect the bacteria integrated in these ARGs. We identified a total of 1295 open reading frames (ORFs) recognized as antimicrobial resistance protein-coding genes. The ORFs were clustered into 349 unique types of ARGs, and these could be further classified into 69 drug resistance classes. Tetracycline resistance was most enriched in pig feces. Pigs raised on commercial farms had a significantly higher AMR level than pigs under semi-free ranging conditions or wild boars. We tracked the changes in the composition of ARGs at different growth stages and gut locations. There were 30 drug resistance classes showing significantly different abundances in pigs between 25 and 240 days of age. The richness of ARGs and 41 drug resistance classes were significantly different between cecum lumen and feces in pigs from commercial farms, but not in wild boars. We identified 24 bacterial species that existed in almost all tested samples (core bacteria) and were integrated 128 ARGs in their genomes. However, only nine ARGs of these 128 ARGs were core ARGs, suggesting that most of the ARGs in these bacterial species might be acquired rather than constitutive. We selected three subsets of ARGs as indicators for evaluating the pollution level of ARGs in samples with high accuracy (r = 0.73~0.89). CONCLUSIONS: This study provides a primary overview of ARG profiles in various farms under different rearing modes, and the data serve as a reference for optimizing the use of antimicrobials and evaluating the risk of pollution by ARGs in pig farms. Video abstract.202235246246
3213130.9998Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Groundwater is an essential public and drinking water supply and its protection is a goal for global policies. Here, we investigated the presence and prevalence of antibiotic residues, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial contamination in groundwater environments at various distances from urban areas. Antibiotic concentrations ranged from below detection limit to 917 ng/L, being trimethoprim, macrolide, and sulfonamide the most abundant antibiotic classes. A total of eleven ARGs (aminoglycoside, β-lactam, chloramphenicol, Macrolide-Lincosamide-Streptogramin B - MLSB, sulfonamide, and tetracycline), one antiseptic resistance gene, and two MGEs were detected by qPCR with relative abundances ranging from 6.61 × 10(-7) to 2.30 × 10(-1) copies/16S rRNA gene copies. ARGs and MGEs were widespread in the investigated groundwater environments, with increased abundances not only in urban, but also in remote areas. Distinct bacterial community profiles were observed, with a higher prevalence of Betaproteobacteria and Bacteroidetes in the less-impacted areas, and that of Firmicutes in the contaminated groundwater. The combined characteristics of increased species diversity, distinct phylogenetic composition, and the possible presence of fecal and/or pathogenic bacteria could indicate different types of contamination. Significant correlations between ARGs, MGEs and specific taxa within the groundwater bacterial community were identified, revealing the potential hosts of resistance types. Although no universal marker gene could be determined, a co-selection of int1, qacEΔ1 and sulI genes, a proxy group for anthropogenic pollution, with the tetC, tetO, tetW resistance genes was identified. As the tet group was observed to follow the pattern of environmental contamination for the groundwater samples investigated in this study, our results strongly support the proposal of this group of genes as an environmental tracer of human impact. Overall, the present study investigated several emerging contaminants in groundwater habitats that may be included in monitoring programs to enable further regulatory and protection measures.201829454283
7173140.9998Animal farms are hot spots for airborne antimicrobial resistance. Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 10(2) to 10(4) copies/m(3) and was accompanied by a considerable intensity of MGEs and HPBs (approximately 10(3) copies/m(3)). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 10(2) in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 10(4) copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media.202235985594
6852150.9998Distribution and co-occurrence patterns of antibiotic resistance genes in black soils in Northeast China. Black soils (Mollisols) are among the most important soil resources for crop production and food security. In China, they are mainly distributed in the northeastern region. To investigate soil antibiotic resistance distribution patterns and monitor soil quality, we randomly chose nine corn fields in Northeast China and analyzed the antibiotic resistance gene (ARG) distribution and co-occurrence patterns on the basis of high-throughput approaches and network analyses. High genetic diversity (136 unique genes) and low ARG abundances (10(-5)-10(-2) copies/16S rRNA gene copy) were detected, with relatively few interactions among ARGs. Type I integron genes were prevalent in the soil and were positively correlated with ARGs, which may increase the risk of ARG transmission. Most ARGs were strongly associated with microorganisms. Moreover, several ARGs were significantly correlated with antibiotics, nutrients, and metal elements. The generation and dissemination of ARGs, which were most likely mediated by mobile genetic elements (MGEs) and bacteria, were affected by environmental conditions. These results provide insights into the widespread co-occurrence patterns in soil resistomes.202235809539
6839160.9998Bioaerosol is an important transmission route of antibiotic resistance genes in pig farms. Although pig farms are hotspots of antibiotic resistance due to intensive use of antibiotics, little is known about the abundance, diversity and transmission of airborne antibiotic resistance genes (ARGs). This study reports that bioaerosol is an important spread route of ARGs in pig farms. ARGs, mobile genetic elements (MGEs), and bacterial communities were investigated in both air and feces samples during winter and summer. The average concentration of airborne ARGs and MGEs during winter is higher than that during summer when using the ventilation system. The tetM is identified as the predominant airborne ARG with abundance of 6.3 ± 1.2 log copies/m(3). Clostridium and Streptococcus are two dominant bacteria and several opportunistic pathogens are detected in air samples. High temperature is favorable for more diverse bacterial communities, but relative humidity has negative effects. The wind speed promotes the spread of airborne ARGs. The network analysis results show the average fecal contribution to airborne bacteria is 19.9% and 59.4% during summer and winter, respectively. Horizontal gene transfer plays an important role in the dissemination of airborne ARGs during winter (77.8% possibility), while a lower possibility of 12.0% in summer.202133864959
7109170.9998Explore the Contamination of Antibiotic Resistance Genes (ARGs) and Antibiotic-Resistant Bacteria (ARB) of the Processing Lines at Typical Broiler Slaughterhouse in China. Farms are a major source of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB), and previous research mainly focuses on polluted soils and breeding environments. However, slaughtering is an important link in the transmission of ARGs and ARB from farmland to dining table. In this study, we aim to reveal the pollution of ARGs and ARB in the slaughter process of broilers. First, by qualitative and quantitative analysis of ARGs in samples collected from the broiler slaughtering and processing production chain, the contamination level of ARGs was reflected; secondly, potential hosts for ARGs and microbial community were analyzed to reflect the possible transmission rules; thirdly, through the antibiotic susceptibility spectrum analysis of four typical food-borne pathogens, the distribution of ARB was revealed. The results showed that 24 types of ARGs were detected positive on the broiler slaughter production line, and tetracycline-resistance genes (20.45%) were the most frequently detected. The types of ARGs vary with sampling process, and all sampling links contain high levels of sul2 and intI1. The most abundant ARGs were detected in chicken surface in the scalding stage and entrails surface in the evisceration stage. There was a significant correlation between intI1 and tetM, suggesting that tetM might be able to enter the human food chain through class-1 integrons. The host range of the oqxB gene is the most extensive, including Sphingobacterium, Bacteroidia unclassified, Rothia, Microbacterium, Algoriella, etc. In the relevant links of the slaughter production line, the microbial community structure is similar. Removing viscera may cause diffusion of ARGs carried by intestinal microorganisms and contaminate chicken and following processing production. The four food-borne pathogens we tested are widely present in all aspects of the slaughter process, and most of them have multi-drug resistance and even have a high degree of resistance to some veterinary drugs banned by the Ministry of Agriculture. Our study preliminarily revealed the pollution of ARGs and ARB in the slaughter process of broilers, and these results are helpful to carry out food safety risk assessment and formulate corresponding control measures.202540232101
7414180.9998Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. In this study, the impact of bovine and poultry manure on the quantitative and qualitative composition of antibiotic resistance genes (ARGs) and the environmental mobilome associated with antimicrobial resistance in soil and crops was determined with the use of next generation sequencing methods. The aim of the study was to perform a metagenomic analysis of manure to estimate the risk of the transmission of ARGs and bacterial drug resistance carriers to fertilized soil and crops. The total copy number of ARGs was nearly four times higher in poultry manure (555 ppm) than in bovine manure (140 ppm), and this relationship was also noted in fertilized soil. Poultry manure induced a much greater increase in the concentrations of ARGs in the soil environment (196.4 ppm) than bovine manure (137.8 ppm) immediately after supplementation. The application of poultry manure led to the highest increase in the abundance of genes encoding resistance to tetracyclines (9%), aminoglycosides (3.5%), sulfonamides (3%), bacitracin (2%), chloramphenicol (2%), and macrolide-lincosamide-streptogramin antibiotics (1%). Heavy metals were stronger promoters of antibiotic resistance in the environment than antibiotics. Antibiotics exerted a greater influence on maintaining the diversity of ARGs than on increasing their abundance in soil. Large quantities of insertion sequences (IS), including those associated with the mobility of ARGs in the population of ESKAPEE pathogens, are introduced to soil with manure. These IS remain stable for up to several months, which indicates that manure, in particular poultry manure, significantly increases the risk of rapid ARG transfer to the environment. Manure also largely contributes to an increase in the diversity of the resistome and mobilome in the metagenome of bacteria isolated from crops. Bacteria of the phylum Proteobacteria appear to play a major role in the transmission of multiple ARGs in crops grown for human and animal consumption.202234864022
3237190.9998Metagenomic analysis reveals antibiotic resistance genes in the bovine rumen. Metagenomics and network analysis were used to profile antibiotic resistance genes (ARGs) and their cooccurrence patterns in bovine rumen microbes. A total of 4941 ruminal microbial genomes and 20 metagenome samples were used in this study. In general, 103 ARG subtypes belonging to 20 ARG types in 79 candidate genomes were identified, showing the broad-spectrum profiles of ARGs in the bovine rumen environment. A wide distribution of genes encoding bacitracin resistance was found among the candidate genomes, suggesting the possibility that bovines might be one of the sources of bacitracin resistance genes. Cooccurrence patterns were found within or between the ARG types, and a positive correlation was found between some ARGs and bacteria, which revealed potential dominant hosts of ARGs. The investigation showed that bovine rumen systems are important ARG reservoirs, and our research might provide a theoretical basis for the evaluation of the harmfulness of ARGs and antibiotic-resistant bacteria (ARB) to food safety and human health.202032561419