# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 319 | 0 | 1.0000 | An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli. Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin-sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin-sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no-plasmid control at low concentrations. Atwbc19 was not significantly different from the no-plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria. | 2008 | 21261836 |
| 318 | 1 | 0.9998 | Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes. | 2005 | 16116418 |
| 317 | 2 | 0.9996 | Transgenic hybrid aspen overexpressing the Atwbc19 gene encoding an ATP-binding cassette transporter confers resistance to four aminoglycoside antibiotics. Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens x P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants. | 2010 | 20383769 |
| 3789 | 3 | 0.9995 | The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. We have examined the fate of an antibiotic resistance marker, incorporated into transgenic maize when fed to chicks. Plant-derived markers were found in the crops of five birds fed transgenic maize and in the stomach contents of two birds. The plant-derived marker gene was not found in the intestines. The survival of the antibiotic resistance marker gene mirrored that of plant DNA targets, demonstrating that it survives no better than other DNA and indicating that it is very unlikely that bacteria in the gut of chickens will be transformed to ampicillin resistance when the birds are fed transgenic maize. | 2002 | 11751781 |
| 6312 | 4 | 0.9995 | D-serine deaminase is a stringent selective marker in genetic crosses. The presence of the locus for D-serine deaminase (dsd) renders bacteria resistant to growth inhibition by D-serine and enables them to grow with D-serine as the sole nitrogen source. The two properties permit stringent selection in genetic crosses and make the D-serine deaminase gene an excellent marker, especially in the construction of strains for which the use of antibiotic resistance genes as selective markers is not allowed. | 1995 | 7814336 |
| 9327 | 5 | 0.9995 | Detection of the merA gene and its expression in the environment. Bacterial transformation of mercury in the environment has received much attention owing to the toxicity of both the ionic form and organomercurial compounds. Bacterial resistance to mercury and the role of bacteria in mercury cycling have been widely studied. The genes specifying the required functions for resistance to mercury are organized on the mer operon. Gene probing methodologies have been used for several years to detect specific gene sequences in the environment that are homologous to cloned mer genes. While mer genes have been detected in a wide variety of environments, less is known about the expression of these genes under environmental conditions. We combined new methodologies for recovering specific gene mRNA transcripts and mercury detection with a previously described method for determining biological potential for mercury volatilization to examine the effect of mercury concentrations and nutrient availability on rates of mercury volatilization and merA transcription. Levels of merA-specific transcripts and Hg(II) volatilization were influenced more by microbial activity (as manipulated by nutrient additions) than by the concentration of total mercury. The detection of merA-specific transcripts in some samples that did not reduce Hg(II) suggests that rates of mercury volatilization in the environment may not always be proportional to merA transcription. | 1996 | 8849424 |
| 386 | 6 | 0.9995 | A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. The neo (neomycin-resistance) gene of transposon Tn5 encodes the enzyme neomycin phosphotransferase II (EC 2.7.1.95), which confers resistance to various aminoglycoside antibiotics, including kanamycin and G418. The gene is widely used as a selectable marker in the transformation of organisms as diverse as bacteria, yeast, plants, and animals. We found a mutation that involves a glutamic to aspartic acid conversion at residue 182 in the protein encoded by the chimeric neomycin phosphotransferase II genes of several commonly used transformation vectors. The mutation substantially reduces phosphotransferase activity but does not appear to affect the stability of the neomycin phosphotransferase II mRNA or protein. Plants and bacteria transformed with the mutant gene are less resistant to antibiotics than those transformed with the normal gene. A simple restriction endonuclease digestion distinguishes between the mutant and the normal gene. | 1990 | 2159150 |
| 388 | 7 | 0.9995 | Improved bacterial hosts for regulated expression of genes from lambda pL plasmid vectors. The construction and use of a set of Escherichia coli strains with defective lambda prophages that facilitate expression of genes cloned in lambda pL-plasmid vectors is described. These bacteria allow high and regulated expression of such genes, whereas a kanamycin-resistance marker (KmR) on the prophage allows easy identification and genetic transfer from strain to strain. Optimal conditions for examining gene expression with the pL-vector systems using these strains are discussed. | 1993 | 8406046 |
| 9304 | 8 | 0.9995 | Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. The capacity of Campylobacter jejuni to generate genetic diversity was determined for its flagellar region. Recombination within a genome, as well as recombination after the uptake of exogenous DNA, could be demonstrated. The subunit of the flagellar filament of C. jejuni is encoded by two tandem genes, flaA and flaB, which are highly similar and therefore subject to recombination. A spontaneous recombination within this locus was demonstrated in a bacterial clone containing an antibiotic-resistance gene inserted in flaA. A recombinant was isolated in which the antibiotic-resistance gene had been repositioned into flaB, indicating that genetic information can be exchanged between the two flagellin genes of C. jejuni. The occurrence of recombinational events after the uptake of exogenous DNA by naturally competent bacteria was demonstrated with two mutants containing different antibiotic-resistance markers in their flagellin genes. Double-resistant transformants were formed when purified chromosomal donor DNA was added to a recipient strain, when the two bacterial cultures were mixed under conditions that induce natural competence, or when the two strains were cocultured. Both mechanisms of recombination may be used by the pathogenic organism to escape the immunological responses of the host or otherwise adapt to the environment. | 1995 | 7894725 |
| 383 | 9 | 0.9995 | Construction of improved vectors and cassettes containing gusA and antibiotic resistance genes for studies of transcriptional activity and bacterial localization. Broad-host-range, conjugative vectors with a constitutively expressed gusA gene combined with different antibiotic resistance (tetracycline, gentamicin, kanamycin) genes have been constructed. These plasmids are designed for tracking Gram-negative bacterial strains without the risk of random mutagenesis. We also constructed a set of cassettes containing a promoterless gusA gene linked with different antibiotic resistance genes for making transcriptional fusions and for cassette mutagenesis. New plasmids and cassettes can be useful tools for studying gene expression, interaction of bacteria with plants and monitoring bacteria in the environment. | 2001 | 11348677 |
| 9268 | 10 | 0.9995 | The expression of integron arrays is shaped by the translation rate of cassettes. Integrons are key elements in the rise and spread of multidrug resistance in Gram-negative bacteria. These genetic platforms capture cassettes containing promoterless genes and stockpile them in arrays of variable length. In the current integron model, expression of cassettes is granted by the P(c) promoter in the platform and is assumed to decrease as a function of its distance. Here we explored this model using a large collection of 136 antibiotic resistance cassettes and show the effect of distance is in fact negligible. Instead, cassettes have a strong impact in the expression of downstream genes because their translation rate affects the stability of the whole polycistronic mRNA molecule. Hence, cassettes with reduced translation rates decrease the expression and resistance phenotype of cassettes downstream. Our data puts forward an integron model in which expression is contingent on the translation of cassettes upstream, rather than on the distance to the P(c). | 2024 | 39455579 |
| 280 | 11 | 0.9995 | Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria. The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes. | 2011 | 21564143 |
| 260 | 12 | 0.9995 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 387 | 13 | 0.9995 | Expression of tetracycline resistance in pBR322 derivatives reduces the reproductive fitness of plasmid-containing Escherichia coli. Plasmid pBR322 and its numerous derivatives are used extensively for research and in biotechnology. The tetracycline-resistance (TcR) genes in these plasmids are expressed constitutively and cells carrying these plasmids are resistant to tetracycline. We have shown that expression of the TcR gene has an adverse effect on the reproductive fitness of plasmid-containing bacteria in both glucose-limited batch and chemostat cultures. If the TcR genes are inactivated at any one of three different restriction sites, mixed cultures of plasmid-free and plasmid-containing bacteria grow at the same rate. | 1985 | 3005111 |
| 9328 | 14 | 0.9994 | Man-made cell-like compartments for molecular evolution. Cellular compartmentalization is vital for the evolution of all living organisms. Cells keep together the genes, the RNAs and proteins that they encode, and the products of their activities, thus linking genotype to phenotype. We have reproduced this linkage in the test tube by transcribing and translating single genes in the aqueous compartments of water-in-oil emulsions. These compartments, with volumes close to those of bacteria, can be recruited to select genes encoding catalysts. A protein or RNA with a desired catalytic activity converts a substrate attached to the gene that encodes it to product. In other compartments, substrates attached to genes that do not encode catalysts remain unmodified. Subsequently, genes encoding catalysts are selectively enriched by virtue of their linkage to the product. We demonstrate the linkage of genotype to phenotype in man-made compartments using a model system. A selection for target-specific DNA methylation was based on the resistance of the product (methylated DNA) to restriction digestion. Genes encoding HaeIII methyltransferase were selected from a 10(7)-fold excess of genes encoding another enzyme. | 1998 | 9661199 |
| 6313 | 15 | 0.9994 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |
| 281 | 16 | 0.9994 | Detection of potential transgenic plant DNA recipients among soil bacteria. The likelihood of gene transfer from transgenic plants to bacteria is dependent on gene number and the presence of homologous sequences. The large number of transgene copies in transplastomic (transgenes contained in the chloroplast genome) plant cells as well as the prokaryotic origin of the transgene, may thus significantly increase the likelihood of gene transfer to bacteria that colonize plant tissues. In order to assess the probability of such transfer, the length of homologous DNA sequences required between the transgene and the genome of the bacterial host was assessed. In addition, the probability that bacteria, which co-infect diseased plants, are transformable and have sequences similar to the flanking regions of the transgene was evaluated. Using Acinetobacter baylyi strain BD143 and transplastomic tobacco plants harboring the aadA gene (streptomycin and spectinomycin resistance), we found that sequences identical to the flanking regions containing as few as 55 nucleotides were sufficient for recombination to occur. Consequently, a collection of bacterial isolates able to colonize tobacco plant tissue infected by Ralstonia solanacearum strain K60 was obtained, screened for DNA sequence similarity with the chloroplastic genes accD and rbcL flanking the transgene, and tested for their ability to uptake extracellular DNA (broad host-range pBBR1MCS plasmids) by natural or electro-transformation. Results showed that among the 288 bacterial isolates tested, 8% presented DNA sequence similarity with one or both chloroplastic regions flanking the transgene. Two isolates, identified as Pseudomonas sp. and Acinetobacter sp., were able to integrate exogenous plasmid DNA by electro-transformation and natural transformation, respectively. Our data suggest that transplastomic plant DNA recipients might be present in soil bacterial communities. | 2007 | 17961481 |
| 279 | 17 | 0.9994 | In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Interkingdom gene transfer is limited by a combination of physical, biological, and genetic barriers. The results of greenhouse experiments involving transplastomic plants (genetically engineered chloroplast genomes) cocolonized by pathogenic and opportunistic soil bacteria demonstrated that these barriers could be eliminated. The Acinetobacter sp. strain BD413, which is outfitted with homologous sequences to chloroplastic genes, coinfected a transplastomic tobacco plant with Ralstonia solanacearum and was transformed by the plant's transgene (aadA) containing resistance to spectinomycin and streptomycin. However, no transformants were observed when the homologous sequences were omitted from the Acinetobacter sp. strain. Detectable gene transfer from these transgenic plants to bacteria were dependent on gene copy number, bacterial competence, and the presence of homologous sequences. Our data suggest that by selecting plant transgene sequences that are nonhomologous to bacterial sequences, plant biotechnologists could restore the genetic barrier to transgene transfer to bacteria. | 2002 | 12089013 |
| 263 | 18 | 0.9994 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 445 | 19 | 0.9994 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |