Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
319901.0000Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments. Heavy metals (HMs) and pesticides disrupt aquatic biodiversity and microbial communities, contributing to antibiotic resistance via cross-resistance and co-selection mechanisms. This study investigates the relationship between organophosphorus pesticides (OPs), HMs, microbial diversity, and antibiotic resistance genes (ARGs) in eight lakes and wetlands. Microbial communities were analyzed via metagenomics methods, and data were processed using CLC Genomics Workbench 22. ARGs, including tetA, tetB, qnrA, qnrS, CIT, Fox, KPC, CTX-M1, DHA, GES, OXA, IMP, VEB, NDM1, SHV, TEM, CTX-M, PER, and MOX, were identified through polymerase chain reaction (PCR). Element concentrations and pesticide were quantified using inductively coupled plasma mass spectrometry and gas chromatography-mass spectrometry, respectively. The results indicate that environmental elements and pesticides significantly influence microbial diversity. Proteobacteria (Gamma, Beta, Alpha) dominate over other bacteria in all locations. β-Lactamase resistance genes have a significant positive correlations with the concentrations of boron, iron, lithium, magnesium, sodium, and phosphorus (P-value<0.05). Positive correlations between phosphorus, iron, and beta-lactamase genes suggest that higher concentrations of these elements may increase resistance likelihood by promoting resistant bacterial growth or facilitating gene transfer. Additionally, tetA and tetB exhibited a significant positive correlation with parathion concentration. The results showed that OPs and HMs increase antibiotic resistance by causing gene mutations, altering gene expression, and promoting horizontal gene transfer, resulting in multidrug-resistant strains. This highlights the need for monitoring these pollutants as they affect microbial diversity and accelerate antibiotic resistance. Targeted measures, such as bioremediation and pollution control, are essential to mitigate risks to the environment and public health.202540056814
318810.9998Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, bla(OXA), sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, bla(NDM), and bla(KPC) during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.202337399936
328320.9998Prevalence of diverse antimicrobial resistance genes and bacteria in sewage treatment plant-derived sludge environment. Antimicrobial resistance (AMR) contamination in the environment is one of the most significant worldwide threats of the 21(st) century. Since sludge is heavily exposed to diverse contaminants, including pharmaceuticals, the inhabitant bacterial population is expected to exhibit resistance to antimicrobial agents. In this study, sewage treatment plant (STP) sludge samples were analyzed to assess the antibiotic-resistant bacterial population, abundance of AMR genes (ermF, qnrS, Sul1, blaGES, blaCTX-M, and blaNDM), and mobile genetic elements (intl1 and IS26). Out of 16, six bacterial isolates exhibited resistance to 13 antibiotics with a high multiple antibiotic resistance index (MARI) (0.93) and high metal tolerance. Quantitative polymerase chain reaction showed the abundance of target genes ranging from 6.6 × 10(3) to 6.5 × 10(8) copies g(-1) sludge. The overall outcome reveals that STP sludge comprised varied multidrug-resistant bacterial populations. It will give insights into the functions of heavy metals and biofilm development in the selection and spread of AMR genes and the associated bacteria. Therefore, the application of sludge needs proper screening for AMR and metal contamination prior to its countless applications. This study will contribute immensely to the risk analysis of STP effluents on environmental health, including control of AMR transmission.202438463555
534830.9998Characterization of microbial community and antibiotic resistome in intra urban water, Wenzhou China. The present study investigated the water quality index, microbial composition and antimicrobial resistance genes in urban water habitats. Combined chemicals testing, metagenomic analyses and qualitative PCR (qPCR) were conducted on 20 locations, including rivers from hospital surrounds (n = 7), community surrounds (n = 7), and natural wetlands (n = 6). Results showed that the indexes of total nitrogen, phosphorus, and ammonia nitrogen of hospital waters were 2-3 folds high than that of water from wetlands. Bioinformatics analysis revealed a total of 1,594 bacterial species from 479 genera from the three groups of water samples. The hospital-related samples had the greatest number of unique genera, followed by those from wetlands and communities. The hospital-related samples contained a large number of bacteria associated with the gut microbiome, including Alistipes, Prevotella, Klebsiella, Escherichia, Bacteroides, and Faecalibacterium, which were all significantly enriched compared to samples from the wetlands. Nevertheless, the wetland waters enriched bacteria from Nanopelagicus, Mycolicibacterium and Gemmatimonas, which are typically associated with aquatic environments. The presence of antimicrobial resistance genes (ARGs) that were associated with different species origins in each water sample was observed. The majority of ARGs from hospital-related samples were carried by bacteria from Acinetobacter, Aeromonas and various genera from Enterobacteriaceae, which each was associated with multiple ARGs. In contrast, the ARGs that were exclusively in samples from communities and wetlands were carried by species that encoded only 1 to 2 ARGs each and were not normally associated with human infections. The qPCR showed that water samples of hospital surrounds had higher concentrations of intI1 and antimicrobial resistance genes such as tetA, ermA, ermB, qnrB, sul1, sul2 and other beta-lactam genes. Further genes of functional metabolism reported that the enrichment of genes associated with the degradation/utilization of nitrate and organic phosphodiester were detected in water samples around hospitals and communities compared to those from wetlands. Finally, correlations between the water quality indicators and the number of ARGs were evaluated. The presence of total nitrogen, phosphorus, and ammonia nitrogen were significantly correlated with the presence of ermA and sul1. Furthermore, intI1 exhibited a significant correlation with ermB, sul1, and bla(SHV), indicating a prevalence of ARGs in urban water environments might be due to the integron intI1's diffusion-promoting effect. However, the high abundance of ARGs was limited to the waters around the hospital, and we did not observe the geographical transfer of ARGs along with the river flow. This may be related to water purifying capacity of natural riverine wetlands. Taken together, continued surveillance is required to assess the risk of bacterial horizontal transmission and its potential impact on public health in the current region.202337396356
319240.9997Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.202134254820
347250.9997Selective pressure governs the composition, antibiotic, and heavy metal resistance profiles of Aeromonas spp. isolated from Ba River in Northwest China. The selective pressure of the living surroundings is a key factor in the development of resistance profiles in pathogenic bacteria such as Aeromonas spp. In this study, Aeromonas species were isolated from the Ba River, and their composition, resistance profiles to antibiotics, and heavy metals (HMs) were investigated. The discovery revealed that selective pressure altered the diversity of Aeromonas spp., with Aeromonas veronii being more adaptable to contaminated waters. Long-term exposure to antibiotics or HMs exerts persistent selective pressure on Aeromonas species, leading to the increase in multiple antibiotic resistance (MAR) index and multidrug-resistant (MDR) strains. Furthermore, HMs could drive the co-selection of antibiotic resistance via co-resistance or cross-resistance. bla(TEM), bla(SHV), bla(CTX-M), sul1, czcA, mexA, and mexF were detected at high frequencies in Aeromonas species. Among these resistance phenotypes conferred genes, bla(TEM) may be intrinsic in the genome of Aeromonas spp., while mexA and mexF may have been acquired from surrounding environments owing to selective pressure. Resistance genes evolved as a consequence of selective pressure and have been shown to be positively correlated with their prevalence. Our study suggests that the selective pressure of living surroundings significantly contributes to the composition and resistance profiles of Aeromonas spp. in the riverine ecosystem.202235657546
321460.9997Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.202032402966
321570.9997Prevalence of antibiotic resistance genes its association with microbiota in raw milk of northwest Xinjiang. The issue of antibiotic resistance caused by antibiotic resistance genes (ARGs) has become a significant concern in environmental research in recent years, while raw milk is an important link in the food chain and has become one of the carriers and reservoirs of ARGs, which has not been taken seriously. This research employed high-throughput quantitative PCR and Illumina sequencing techniques targeting the 16S rRNA gene. These methods were used to examine the bacterial community composition and genes associated with antibiotic resistance in raw milk samples collected from the northwestern area of Xinjiang. An aggregate of 31 distinct resistance alleles were identified, with their abundance reaching as high as 3.70 × 10(5) copies per gram in the analyzed raw milk samples. Microorganisms harboring ARGs that confer resistance to beta-lactams, tetracyclines, aminoglycosides, and chloramphenicol derivatives were prevalent in raw milk. Procrustes analysis revealed a certain degree of correlation between the microbial community and the antibiotic resistance gene (ARG) profiles. Furthermore, network analysis demonstrated that Actinobacteria and Firmicutes were the predominant phyla exhibiting co-occurrence relationships with specific ARGs. Combining the findings from Variance Partitioning Analysis (VPA), the distribution of ARGs was mainly driven by three factors: the combined effect of physicochemical properties and mobile genetic elements (MGEs) (33.5%), the interplay between physicochemical parameters and microbial communities (31.8%), and the independent contribution of physicochemical factors (20.7%). The study demonstrates that the overall abundance of ARGs correlates with physicochemical parameters, bacterial community composition, and the presence of MGEs. Furthermore, understanding these associations facilitates the evaluation of antibiotic resistance risks, thereby contributing to enhanced farm management practices and the assurance of food safety.202540718809
320880.9997Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China. Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (bla(KPC) and bla(VIM)) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying bla(CTX-M-55) were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments.202540732167
536590.9997Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., bla(NDM)), 3rd and 4th generation cephalosporins (i.e., bla(CMY-2)), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.202439334983
5339100.9997Metal impacts on the persistence and proliferation of β-lactam resistance genes in Xiangjiang River, China. Currently, the emergence of clinically relevant multi-resistant bacteria and the associated β-lactamases resistance genes which threaten the last frontier for antibiotics presents a major challenge for medical treatment. Xiangjiang River is typically contaminated with heavy metals due to the intensive metal mining activities within this watershed. The occurrence and distribution of several β-lactam antibiotics and ten β-lactam resistance genes (bla(TEM), bla(VIM), bla(SHV), bla(GES), bla(DHA), bla(OXA-1), bla(OXA-2), bla(OXA-10), bla(CMY-2), and bla(ampC)) were investigated in the Xiangjiang River, China. The absolute abundance of bla genes was as high as (7.0 ± 0.6) × 10(6) copies/mL for surface water and (2.3 ± 0.7) × 10(8) copies/g for sediment. In contrast, all the detected β-lactam antibiotic compounds were below the detection limit. The distribution of individual bla gene subtypes was correlated with speciation of heavy metals which might affect the bacterial community structure. The principal coordinate analysis (PCoA) and Mantal test reconfirmed that the heavy metals had a correlation with the bla genes and the bla genes were correlated with bacterial community structure, suggesting that heavy metals impacted on the distribution of the bla genes by shifting bacterial community structure under the long-term selective pressure. The microcosm experiments indicated metal-induced persistence of bla genes in the resistant bacteria (Bacillus megaterium, Staphylococcus epidermidis). The persistence of β-lactam resistance under metal selective pressure is beneficial to the survival of resistant bacteria, thereby contributing to the shift of the bacterial community structure, consequently impacts on the distribution of bla genes.201931256402
3193110.9997Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Anthropogenic pressure is known to be a key driver of antimicrobial resistance (AMR) dissemination in the environment. Especially in lower income countries, with poor infrastructure, the level of AMR dissemination is high. Therefore, we assessed the levels and diversity of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Lebanese rivers at estuaries' sites (n = 72) of the Mediterranean Sea in spring 2017 and winter 2018. METHODS: A combined approach using culture techniques and high throughput qPCR were applied to identify ARB and ARGs in rivers along the Lebanese coast. RESULTS: Multidrug-resistant Gram-negative (Enterobacterales and Pseudomonas spp.) and Gram-positive bacterial pathogens were isolated. Levels of ARGs were highest in the winter campaign and areas with high anthropogenic activities and population growth with an influx of refugees. CONCLUSION: Qualitative analysis of ARB and the analysis of the Lebanese estuaries' resistome revealed critical levels of contamination with pathogenic bacteria and provided significant information about the spread of ARGs in anthropogenically impacted estuaries.202235326767
3466120.9997Behavior of last resort antibiotic resistance genes (mcr-1 and bla(NDM-1)) in a drinking water supply system and their possible acquisition by the mouse gut flora. Mcr-1 and bla(NDM-1) antibiotic resistance genes (ARGs) confer resistance to colistins and carbapenems, which are often antibiotics used as a last resort in tertiary care hospitals. Dissemination of these two ARGs in drinking water supply systems and their effect on healthy gut bacteria are poorly studied. In this study, the dissemination of mcr-1 and bla(NDM-1) in a drinking water supply system, and their effect on the antibiotic resistance of mouse gut bacteria are explored. Metagenome analysis revealed that source water (Taipu river and Jinze reservoir) was polluted with ARGs. Mcr-1 and bla(NDM-1) can be disseminated through the water distribution system. Even advanced water treatments (ozone and biological activated carbon (BAC)) could not effectively remove mcr-1 and bla(NDM-1). Low concentrations of chloramine disinfectants in the water distribution system were not effective at limiting ARG abundance. Mobile genetic elements were also found to play a major role in the dissemination of ARGs via horizontal gene transfer (HGT) throughout the water supply system. Statistical analysis revealed that there was no effect of temperature on the abundance of mcr-1 and bla(NDM-1) throughout the water supply system. A last resort ARG, mcr-1 can disseminate from drinking water to the healthy mouse gut. The presence of mcr-1 in a strain belonging to Enterococcus hirae, which is different from the strain belonging to the Bacillus cereus group isolated from drinking water, strongly supports the phenomena of HGT inside the gut. This research provides novel insights into the role of drinking water in disseminating ARGs to the gut and strongly suggests that drinking water may also play a major role apart from other factors known to be involved in the prevalence of last resort ARGs in the gut.202031896482
3137130.9997Evaluation of pre-treated healthcare wastes during COVID-19 pandemic reveals pathogenic microbiota, antibiotics residues, and antibiotic resistance genes against beta-lactams. The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and < 0.002), respectively. FC samples were found to acquire more pathogenic microorganisms than FA and FV samples. Paenibacillus and unclassified Bacilli genera were shared among three groups of samples, meanwhile, antibiotic-resistant bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of bla(TEM-1) and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.202336565841
5293140.9997Tetracycline-Resistant Bacteria Selected from Water and Zebrafish after Antibiotic Exposure. The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.202133804606
3201150.9997Taxonomic and Functional Distribution of Bacterial Communities in Domestic and Hospital Wastewater System: Implications for Public and Environmental Health. The discharge of untreated hospital and domestic wastewater into receiving water bodies is still a prevalent practice in developing countries. Unfortunately, because of an ever-increasing population of people who are perennially under medication, these wastewaters contain residues of antibiotics and other antimicrobials as well as microbial shedding, the direct and indirect effects of which include the dissemination of antibiotic resistance genes and an increase in the evolution of antibiotic-resistant bacteria that pose a threat to public and environmental health. This study assessed the taxonomic and functional profiles of bacterial communities, as well as the antibiotic concentrations in untreated domestic wastewater (DWW) and hospital wastewater (HWW), using high-throughput sequencing analysis and solid-phase extraction coupled to Ultra-high-performance liquid chromatography Mass Spectrometry (UHPLC-MS/MS) analysis, respectively. The physicochemical qualities of both wastewater systems were also determined. The mean concentration of antibiotics and the concentrations of Cl(-), F(-) and PO(4)(3) were higher in HWW samples than in DWW samples. The phylum Firmicutes was dominant in DWW with a sequence coverage of 59.61% while Proteobacteria was dominant in HWW samples with a sequence coverage of 86.32%. At genus level, the genus Exiguobacterium (20.65%) and Roseomonas (67.41%) were predominant in DWW and HWW samples, respectively. Several pathogenic or opportunistic bacterial genera were detected in HWW (Enterococcus, Pseudomonas and Vibrio) and DWW (Clostridium, Klebsiella, Corynebacterium, Bordetella, Staphylocccus and Rhodococcus) samples. Functional prediction analysis indicated the presence of beta-lactam resistance, cationic antimicrobial peptide (CAMP) resistance and vancomycin resistance genes in HWW samples. The presence of these antibiotic resistance genes and cassettes were positively correlated with the presence of pathogens. These findings show the risk posed to public and environmental health by the discharge of untreated domestic and hospital wastewaters into environmental water bodies.202134572642
5359160.9997Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.202439395082
3098170.9997Bacterial Communities and Resistance and Virulence Genes in Hospital and Community Wastewater: Metagenomic Analysis. Metagenomic studies have made it possible to deepen the analysis of the abundance of bacterial populations that carry resistance and virulence determinants in the wastewater environment. In this study, a longitudinal collection of samples of community and hospital wastewater from August 2021 to September 2022 was obtained. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize the bacterial abundance, antimicrobial resistance genes (ARGs), plasmids, and virulence factor genes (VFGs) contained in the wastewater. The microbial composition of the community and hospital wastewater showed that the most abundant bacterial phyla detected in all samples were: Proteobacteria, Bacteroides, Firmicutes, Campylobacterota, and Actinobacteria. Seasonal differences in the relative abundances of species, ARGs, plasmids, and VFGs were observed. In this study, a total of 270 ARGs were detected, and it was found that the absolute abundance of ARGs only showed a 39% reduction in the treated wastewater. Furthermore, the ARGs detected in this study were found to encode resistance to antibiotics of the last choice. Our results showed that plasmids carrying resistance genes were more abundant in raw wastewater, and 60% more abundant in hospital wastewater compared to community wastewater. Several of the VFGs detected in this study encode for adhesion, motility, and biofilm formation, which likely allows bacteria to remain and persist in the wastewater environment and survive WWTP treatment systems, thus managing to escape into the environment via treated wastewater.202540076673
3142180.9997Social demographics determinants for resistome and microbiome variation of a multiethnic community in Southern Malaysia. The prevalence of antibiotic-resistant bacteria in Southeast Asia is a significant concern, yet there is limited research on the gut resistome and its correlation with lifestyle and environmental factors in the region. This study aimed to profile the gut resistome of 200 individuals in Malaysia using shotgun metagenomic sequencing and investigate its association with questionnaire data comprising demographic and lifestyle variables. A total of 1038 antibiotic resistance genes from 26 classes were detected with a mean carriage rate of 1.74 ± 1.18 gene copies per cell per person. Correlation analysis identified 14 environmental factors, including hygiene habits, health parameters, and intestinal colonization, that were significantly associated with the resistome (adjusted multivariate PERMANOVA, p < 0.05). Notably, individuals with positive yeast cultures exhibited a reduced copy number of 15 antibiotic resistance genes. Network analysis highlighted Escherichia coli as a major resistome network hub, with a positive correlation to 36 antibiotic-resistance genes. Our findings suggest that E. coli may play a pivotal role in shaping the resistome dynamics in Segamat, Malaysia, and its abundance is strongly associated with the community's health and lifestyle habits. Furthermore, the presence of yeast appears to be associated with the suppression of antibiotic-resistance genes.202337573460
5354190.9997Cultivation-dependent and high-throughput sequencing approaches studying the co-occurrence of antibiotic resistance genes in municipal sewage system. During the past years, antibiotic-resistant bacteria (ARB) leading for the spreading of antibiotic resistance genes (ARGs) became a global problem, especially multidrug-resistant (MDR) bacteria are considered the prime culprit of antibiotic resistance. However, the correlation between the antibiotic-resistant phenotype and the ARG profiles remains poorly understood. In the present study, metagenomic functional screening and metagenomic analysis of coliforms were combined to explore the phenotype and genotype of the ARBs from municipal sewage. Our results showed that the ARG co-occurrence was widespread in the municipal sewage. The present study also highlighted the high abundance of ARGs from antibiotic resistance coliforms especially the MDR coliforms with ARG level of 33.8 ± 4.2 copies per cell. The ARG profiles and the antibiotic resistance phenotypes of the isolated antibiotic resistant coliforms were also correlated and indicated that the resistance to the related antibiotic (ampicillin, kanamycin, erythromycin, chloramphenicol, and tetracycline) was mostly contributed by the ARGs belonging to the subtypes of β-lactamase, aminoglycoside 3-phosphotransferase, phosphotransferase type 2, chloramphenicol acetyltransferase, tetA, etc.201729034431