Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
319001.0000Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Higher usage of antimicrobial agents in both healthcare facilities and the communities has resulted in an increased spread of resistant bacteria. However, the improved infection prevention and control practices may also contribute to decreasing antimicrobial resistance (AMR). In the present study, wastewater-based epidemiology (WBE) approach was applied to explore the link between COVID-19 and the community usage of antimicrobials, as well as the prevalence of resistance genes. Longitudinal study has been conducted to monitor the levels of 50 antimicrobial agents (AAs), 24 metabolites, 5 antibiotic resistance genes (ARGs) and class 1 integrons (intI 1) in wastewater influents in 4 towns/cities over two years (April 2020 - March 2022) in the South-West of England (a total of 1,180 samples collected with 87,320 individual AA measurements and 8,148 ARG measurements). Results suggested higher loads of AAs and ARGs in 2021-22 than 2020-21, with beta-lactams, quinolones, macrolides and most ARGs showing statistical differences. In particular, the intI 1 gene (a proxy of environmental ARG pollution) showed a significant increase after the ease of the third national lockdown in England. Positive correlations for all quantifiable parent AAs and metabolites were observed, and consumption vs direct disposal of unused AAs has been identified via WBE. This work can help establish baselines for AMR status in communities, providing community-wide surveillance and evidence for informing public health interventions. Overall, studies focused on AMR from the start of the pandemic to the present, especially in the context of environmental settings, are of great importance to further understand the long-term impact of the pandemic on AMR.202438692256
319210.9998Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.202134254820
659120.9998Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. The use of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of AMR between reservoirs demands surveillance in livestock and in humans. We quantified and characterized the acquired resistance gene pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, sequencing more than 5,000 Gb of DNA using shotgun metagenomics. We quantified acquired AMR using the ResFinder database and a second database constructed for this study, consisting of AMR genes identified through screening environmental DNA. The pig and poultry resistomes were very different in abundance and composition. There was a significant country effect on the resistomes, more so in pigs than in poultry. We found higher AMR loads in pigs, whereas poultry resistomes were more diverse. We detected several recently described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between host species and between countries. We found that the total acquired AMR level was associated with the overall country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had similar resistomes. However, functionally determined AMR genes were not associated with total drug use.201830038308
329830.9998Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) are constantly shed into the aquatic environment, with hospital wastewater potentially acting as an important source for resistance spread into the environment. A systematic review was conducted aiming to investigate the role of hospital wastewater on dissemination of antimicrobial resistance in the aquatic environment. Studies included in the review compared the prevalence of ARB and/or ARGs in hospital versus community wastewater. Data were extracted on ARB and/or ARG prevalence. Data on sampling techniques, microbiological methodology and risk of bias of included studies were recorded. Thirty-seven studies were included. Higher frequencies of antibiotic resistance determinants were found in hospital wastewater compared to community sources in 30/37 (81%) of included studies. However, trends for specific multi-drug-resistant bacteria differed. Antibiotic-resistant Gram-negative were more prevalent in hospital compared to community wastewaters, with higher concentrations of extended-spectrum-beta-lactamase-producing pathogens and carbapenemase-producing Enterobacteriaceae in hospital sources in 9/9 studies and 6/7 studies, respectively. Hospitals did not contribute consistently to the abundance of vancomycin-resistant Enterococci (VRE); 5/10 studies found higher abundance of VRE in hospital compared to community wastewaters. Reporting on sampling methods, wastewater treatment processes and statistical analysis were at high risk of bias. Extreme heterogeneity in study methods and outcome reporting precluded meta-analysis. Current evidence concurs that hospital wastewater is an important source for antibiotic resistance in aquatic environments, mainly multidrug-resistant Gram-negative bacteria. Future research is needed to assess the effect of wastewater treatment processes on overall antibiotic resistance in the aquatic environment.202032758846
319340.9998Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Anthropogenic pressure is known to be a key driver of antimicrobial resistance (AMR) dissemination in the environment. Especially in lower income countries, with poor infrastructure, the level of AMR dissemination is high. Therefore, we assessed the levels and diversity of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Lebanese rivers at estuaries' sites (n = 72) of the Mediterranean Sea in spring 2017 and winter 2018. METHODS: A combined approach using culture techniques and high throughput qPCR were applied to identify ARB and ARGs in rivers along the Lebanese coast. RESULTS: Multidrug-resistant Gram-negative (Enterobacterales and Pseudomonas spp.) and Gram-positive bacterial pathogens were isolated. Levels of ARGs were highest in the winter campaign and areas with high anthropogenic activities and population growth with an influx of refugees. CONCLUSION: Qualitative analysis of ARB and the analysis of the Lebanese estuaries' resistome revealed critical levels of contamination with pathogenic bacteria and provided significant information about the spread of ARGs in anthropogenically impacted estuaries.202235326767
328350.9998Prevalence of diverse antimicrobial resistance genes and bacteria in sewage treatment plant-derived sludge environment. Antimicrobial resistance (AMR) contamination in the environment is one of the most significant worldwide threats of the 21(st) century. Since sludge is heavily exposed to diverse contaminants, including pharmaceuticals, the inhabitant bacterial population is expected to exhibit resistance to antimicrobial agents. In this study, sewage treatment plant (STP) sludge samples were analyzed to assess the antibiotic-resistant bacterial population, abundance of AMR genes (ermF, qnrS, Sul1, blaGES, blaCTX-M, and blaNDM), and mobile genetic elements (intl1 and IS26). Out of 16, six bacterial isolates exhibited resistance to 13 antibiotics with a high multiple antibiotic resistance index (MARI) (0.93) and high metal tolerance. Quantitative polymerase chain reaction showed the abundance of target genes ranging from 6.6 × 10(3) to 6.5 × 10(8) copies g(-1) sludge. The overall outcome reveals that STP sludge comprised varied multidrug-resistant bacterial populations. It will give insights into the functions of heavy metals and biofilm development in the selection and spread of AMR genes and the associated bacteria. Therefore, the application of sludge needs proper screening for AMR and metal contamination prior to its countless applications. This study will contribute immensely to the risk analysis of STP effluents on environmental health, including control of AMR transmission.202438463555
257560.9998A systematic scoping review of antibiotic-resistance in drinking tap water. Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to β-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.202439341535
656670.9998Antimicrobial resistance bacteria and genes detected in hospital sewage provide valuable information in predicting clinical antimicrobial resistance. Extensive use of antibiotics is significantly associated with development of antibiotic-resistant (AR) bacteria. However, their causal relationships have not been adequately investigated, especially in human population and hospitals. Our aims were to understand clinical AR through revealing co-occurrence patterns between antibiotic-resistant bacteria and genes (ARB and ARGs), and their association with antibiotic use, and to consider impact of ARB and ARGs on environmental and human health. Antibiotic usage was calculated based on the actual consumption in our target hospital. ARB was identified by culture. In isolates collected from hospital sewage, bacterial-specific DNA sequences and ARGs were determined using metagenomics. Our data revealed that the use of culture-based single-indicator-strain approaches only captured ARB in 16.17% of the infectious samples. On the other hand, 1573 bacterial species and 885 types of ARGs were detected in the sewage. Furthermore, hospital use of antibiotics influenced the resistance profiles, but the strength varied among bacteria. From our metagenomics analyses, ARGs for aminoglycosides were the most common, followed by sulfonamide, tetracycline, phenicol, macrolides, and quinolones, comprising 82.6% of all ARGs. Association analyses indicated that 519 pairs of ARGs were significantly correlated with ARB species (r > 0.8). The co-occurrence patterns of bacteria-ARGs mirrored the AR in the clinic. In conclusion, our systematic investigation further emphasized that antibiotic usage in hospital significantly influenced the abundance and types of ARB and ARGs in dose- and time-dependent manners which, in turn, mirrored clinical AR. In addition, our data provide novel information on development of certain ARB with multiple antibiotic resistance. These ARB and ARGs from sewage can also be disseminated into the environment and communities to create health problems. Therefore, it would be helpful to use such data to develop improved predictive risk model of AR, to enhance effective use of antibiotics, and to reduce environmental pollution.202134247085
346780.9998Epidemiological characteristics of antibiotic resistance genes in various bacteria worldwide. OBJECTIVES: This study aims to investigate the epidemiological characteristics of various bacteria carrying ARGs on a global scale over extended time periods. METHODS: A total of 25,285 globally isolated bacteria's genomes were analyzed to explore ARGs. The analysis focused on temporal, geographic, and species distribution, including pathogenic and non-pathogenic bacteria, intracellular parasitic states, ARG types, and their association with MGEs. Multiple linear regression was employed to identify ARG risk factors in bacteria. RESULTS: The overall prevalence of bacteria with ARGs was 64.2%, indicating that at least one ARG was present in 64.2% (16,243/25,285) of the included bacterial, with an average of 14.4 ARGs per bacterium. ARGs have been increasing globally, averaging one additional ARG every three years, closely linked to rising antibiotic consumption. Pathogenic bacteria harbored more ARGs than non-pathogenic ones. Intracellular parasitic bacteria still carry specific types of ARGs despite being less likely to generate ARGs. Clinical and human-associated bacteria showed higher ARG counts, and bacteria isolated from humans had the highest number of disinfectant-resistant genes. The average number of ARGs in bacteria isolated from high-middle-income and lower-middle-income countries is higher. Factors like motility, non-sporulation, Gram-positive staining, extracellular parasitism, and human pathogenicity are linked to higher ARGs levels. CONCLUSIONS: An increasing number of bacteria carrying ARGs pose a significant challenge to the control of antibiotics-resistant pathogens worldwide. The issue of bacteria carrying more ARGs requires greater global attention.202540147137
329790.9998Antibiotic Resistance in Wastewater Treatment Plants and Transmission Risks for Employees and Residents: The Concept of the AWARE Study. Antibiotic resistance has become a serious global health threat. Wastewater treatment plants may become unintentional collection points for bacteria resistant to antimicrobials. Little is known about the transmission of antibiotic resistance from wastewater treatment plants to humans, most importantly to wastewater treatment plant workers and residents living in the vicinity. We aim to deliver precise information about the methods used in the AWARE (Antibiotic Resistance in Wastewater: Transmission Risks for Employees and Residents around Wastewater Treatment Plants) study. Within the AWARE study, we gathered data on the prevalence of two antibiotic resistance phenotypes, ESBL-producing E. coli and carbapenemase-producing Enterobacteriaceae, as well as on their corresponding antibiotic resistance genes isolated from air, water, and sewage samples taken from inside and outside of different wastewater treatment plants in Germany, the Netherlands, and Romania. Additionally, we analysed stool samples of wastewater treatment plant workers, nearby residents, and members of a comparison group living ≥1000 m away from the closest WWTP. To our knowledge, this is the first study investigating the potential spread of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes from WWTPs to workers, the environment, and nearby residents. Quantifying the contribution of different wastewater treatment processes to the removal efficiency of ESBL-producing E. coli, carbapenemase-producing Enterobacteriaceae, and antibiotic resistance genes will provide us with evidence-based support for possible mitigation strategies.202133919179
7110100.9998The "best practices for farming" successfully contributed to decrease the antibiotic resistance gene abundances within dairy farms. INTRODUCTION: Farms are significant hotspots for the dissemination of antibiotic-resistant bacteria and genes (ARGs) into the environment and directly to humans. The prevalence of ARGs on farms underscores the need for effective strategies to reduce their spread. This study aimed to evaluate the impact of a guideline on "best practices for farming" aimed at reducing the dissemination of antibiotic resistance. METHODS: A guideline focused on prudent antibiotic use, selective therapy, and hygienic and immune-prophylactic practices was developed and provided to the owners of 10 selected dairy farms and their veterinarians. Fecal samples were collected from lactating cows, dry cows, and calves both before and after the implementation of the guideline. ARGs (bla (TEM), ermB, sul2, and tetA) were initially screened by end-point PCR, followed by quantification using digital droplet PCR. ARG abundance was expressed in relative terms by dividing the copy number of ARGs by the copy number of the 16S rRNA gene. RESULTS: The ARG abundances were higher in lactating cows compared to other categories. Despite similar levels of antibiotic administration (based on veterinary prescription data from the sampled farms) in both sampling campaigns, the total abundance of selected ARGs, particularly bla (TEM) and tetA, significantly decreased after the adoption of the farming guidelines. DISCUSSION: This study highlights the positive impact of prudent antibiotic use and the implementation of farming best practices in reducing the abundance of ARGs. The lactating cow category emerged as a crucial point of intervention for reducing the spread of antibiotic resistance. These findings contribute to ongoing efforts to address antibiotic resistance in farm environments and strengthen the evidence supporting the adoption of good farming practices.202439840338
3191110.9998Profiling of Bacterial Communities of Hospital Wastewater Reveals Clinically Relevant Genera and Antimicrobial Resistance Genes. In Mexico, hospital wastewater (HWW) is a source of chemical and microbiological contamination, and it is released into the municipal sewage system without prior treatment. This water may contain pathogenic bacteria and antimicrobial resistance genes, which represent a risk to Public Health and the environment. So far, there are no studies that analyse this problem comprehensively, relating bacterial population structures, chemical contaminants, and seasonality. The aim of this work was to seasonally characterise the bacterial communities of HWW, including clinically relevant bacteria and resistance genes in Hospital Juárez de México (HJM), and to evaluate the impact of physicochemical factors on their composition. A one-year observational, cross-sectional study was conducted at five HWW discharge points of HJM. Fourteen physicochemical parameters were determined by using standard methodologies, and statistical differences between discharges and seasons were evaluated. Bacterial communities were analysed by targeted amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In addition, the presence of eight antimicrobial resistance genes of local epidemiological importance was assessed. Data were analysed using alpha and beta diversity indices, principal component analysis, and multivariate statistical tests. HWW showed high taxonomic diversity, with Proteobacteria, Firmicutes, and Bacteroidetes standing out. Clinically relevant bacteria were identified in 73.3% of the analyses, with Enterobacter and Escherichia-Shigella predominating. Total and dissolved solids, temperature, nitrate, and pH significantly influenced the bacterial composition of HWW. Seven out of the eight genes evaluated were identified, with bla(KPC), bla(OXA-40), and mcr-1 being the most frequent, showing significant seasonal differences. This study underlines the microbiological and chemical complexity of HWW, highlighting the impact of clinically relevant bacteria and antimicrobial resistance genes on Public Health. The findings emphasise the need to implement hospital waste management programmes and ideally specific treatment plants to minimise the associated risks and protect the environment and human health.202540572204
2548120.9998A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. INTRODUCTION: There are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time. METHODS: A population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes. RESULTS: Sheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species. DISCUSSION: The results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level.202336998408
3164130.9998Variations in Bacterial Communities and Antibiotic Resistance Genes Across Diverse Recycled and Surface Water Irrigation Sources in the Mid-Atlantic and Southwest United States: A CONSERVE Two-Year Field Study. Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions.202236194536
4994140.9998Diving into the unknown: identification of antimicrobial resistance hotspots in a tropical urban estuary. Antimicrobial resistance is widely studied and well-characterized from a clinical perspective. However, considerably less information is available regarding resistance in environmental settings, especially in aquatic habitats. This study presents data regarding the occurrence, distribution and the antimicrobial susceptibility profile of bacteria isolated from Guanabara Bay (GB), a heavily polluted tropical urban estuary and an important tourist attraction in Rio de Janeiro, Brazil. Water samples from sites characterized by growing degrees of pollution were analysed by culture-dependent methods, revealing the presence of multidrug-resistant bacteria and clinically relevant indicators of antimicrobial resistance, such as extended-spectrum beta-lactamases. Isolates were identified by mass spectrometry, which indicated the presence of potential human pathogens such as Aeromonas spp. and Vibrio spp. Bacteria harbouring beta-lactam resistance genes were also detected. Although GB is widely used as a recreational and fishing area, there is a substantial knowledge gap regarding the monitoring of antimicrobial resistance and the risk that exposure to these waters poses to public health. Thus, this study reveals new information that calls for better comprehension of antimicrobial resistance in aquatic environments, especially those used for recreational purposes.202134146437
3468150.9998Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145
2574160.9998Detection of Antibiotic Resistance Genes in Source and Drinking Water Samples from a First Nations Community in Canada. Access to safe drinking water is now recognized as a human right by the United Nations. In developed countries like Canada, access to clean water is generally not a matter of concern. However, one in every five First Nations reserves is under a drinking water advisory, often due to unacceptable microbiological quality. In this study, we analyzed source and potable water from a First Nations community for the presence of coliform bacteria as well as various antibiotic resistance genes. Samples, including those from drinking water sources, were found to be positive for various antibiotic resistance genes, namely, ampC, tet(A), mecA, β-lactamase genes (SHV-type, TEM-type, CTX-M-type, OXA-1, and CMY-2-type), and carbapenemase genes (KPC, IMP, VIM, NDM, GES, and OXA-48 genes). Not surprisingly, substantial numbers of total coliforms, including Escherichia coli, were recovered from these samples, and this result was also confirmed using Illumina sequencing of the 16S rRNA gene. These findings deserve further attention, as the presence of coliforms and antibiotic resistance genes potentially puts the health of the community members at risk. IMPORTANCE: In this study, we highlight the poor microbiological quality of drinking water in a First Nations community in Canada. We examined the coliform load as well as the presence of antibiotic resistance genes in these samples. This study examined the presence of antibiotic-resistant genes in drinking water samples from a First Nations Community in Canada. We believe that our findings are of considerable significance, since the issue of poor water quality in First Nations communities in Canada is often ignored, and our findings will help shed some light on this important issue.201627235436
3469170.9998Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. The spread of antibiotic resistance among bacterial pathogens is to a large extent mediated by mobile antibiotic resistance genes (ARGs). The prevalence and geographic distribution of several newly discovered ARGs, as well as some clinically important ARGs conferring resistance to last resort antibiotics, are largely unknown. Targeted analysis of wastewater samples could allow estimations of carriage in the population connected to the sewers as well as release to the environment. Here we quantified ARGs conferring resistance to linezolid (optrA and cfr(A)) and colistin (mcr-1, -2, -3, -4 and -5) and the recently discovered gar (aminoglycoside ARG) and sul4 (sulphonamide ARG) in raw hospital and municipal wastewater as well as treated municipal wastewater during five years in a low antibiotic resistance prevalence setting (Gothenburg, Sweden). Additionally, variations in bacterial composition of the wastewaters characterized by 16S rRNA sequencing were related to the variations of the ARGs in an attempt to reveal if the presence of known or suspected bacterial host taxa could explain the presence of the ARGs in wastewater. The mcr-1, mcr-3, mcr-4, mcr-5, sul4 and gar genes were detected regularly in all types of wastewater samples while optrA and cfr(A) were detected only in hospital wastewater. The most abundant genes were mcr-3 and mcr-5, especially in municipal wastewater. The detection of optrA was restricted to a peak during one year. Most of the ARGs correlated with taxa previously described as bacterial hosts and associated with humans. Although some of the tentative hosts may include bacteria also thriving in wastewater environments, detection of the ARGs in the wastewaters could reflect their presence in the gut flora of the contributing populations. If so, they could already today or in the near future hinder treatment of bacterial infections in a setting where they currently are rarely targeted/detected during clinical surveillance.202234748849
7108180.9998Characterization of the resistome in manure, soil and wastewater from dairy and beef production systems. It has been proposed that livestock production effluents such as wastewater, airborne dust and manure increase the density of antimicrobial resistant bacteria and genes in the environment. The public health risk posed by this proposed outcome has been difficult to quantify using traditional microbiological approaches. We utilized shotgun metagenomics to provide a first description of the resistome of North American dairy and beef production effluents, and identify factors that significantly impact this resistome. We identified 34 mechanisms of antimicrobial drug resistance within 34 soil, manure and wastewater samples from feedlot, ranch and dairy operations. The majority of resistance-associated sequences found in all samples belonged to tetracycline resistance mechanisms. We found that the ranch samples contained significantly fewer resistance mechanisms than dairy and feedlot samples, and that the resistome of dairy operations differed significantly from that of feedlots. The resistome in soil, manure and wastewater differed, suggesting that management of these effluents should be tailored appropriately. By providing a baseline of the cattle production waste resistome, this study represents a solid foundation for future efforts to characterize and quantify the public health risk posed by livestock effluents.201627095377
6603190.9998Antimicrobial resistance in southeast Asian water environments: A systematic review of current evidence and future research directions. Antimicrobial resistance has been a serious and complex issue for over a decade. Although research on antimicrobial resistance (AMR) has mainly focused on clinical and animal samples as essential for treatment, the AMR situation in aquatic environments may vary and have complicated patterns according to geographical area. Therefore, this study aimed to examine recent literature on the current situation and identify gaps in the AMR research on freshwater, seawater, and wastewater in Southeast Asia. The PubMed, Scopus, and ScienceDirect databases were searched for relevant publications published from January 2013 to June 2023 that focused on antimicrobial resistance bacteria (ARB) and antimicrobial resistance genes (ARGs) among water sources. Based on the inclusion criteria, the final screening included 41 studies, with acceptable agreement assessed using Cohen's inter-examiner kappa equal to 0.866. This review found that 23 out of 41 included studies investigated ARGs and ARB reservoirs in freshwater rather than in seawater and wastewater, and it frequently found that Escherichia coli was a predominant indicator in AMR detection conducted by both phenotypic and genotypic methods. Different ARGs, such as bla(TEM), sul1, and tetA genes, were found to be at a high prevalence in wastewater, freshwater, and seawater. Existing evidence highlights the importance of wastewater management and constant water monitoring in preventing AMR dissemination and strengthening effective mitigation strategies. This review may be beneficial for updating current evidence and providing a framework for spreading ARB and ARGs, particularly region-specific water sources. Future AMR research should include samples from various water systems, such as drinking water or seawater, to generate contextually appropriate results. Robust evidence regarding standard detection methods is required for prospective-era work to raise practical policies and alerts for developing microbial source tracking and identifying sources of contamination-specific indicators in aquatic environment markers.202337394072