# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3173 | 0 | 1.0000 | Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health. | 2025 | 40633655 |
| 3174 | 1 | 0.9998 | Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river. | 2023 | 36773904 |
| 3176 | 2 | 0.9998 | Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces. | 2023 | 37742410 |
| 6867 | 3 | 0.9998 | Comparative analysis of characteristics of antibiotic resistomes between Arctic soils and representative contaminated samples using metagenomic approaches. Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria. | 2024 | 38452676 |
| 6865 | 4 | 0.9998 | A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. River is considered generally as a natural reservoir of antibiotic resistance genes (ARGs) in environments. For the prevention and control of ARG risks, it is critical to comprehensively characterize the antibiotic resistomes and their associations in riverine systems. In this study, we proposed a metagenomic framework for identifying antibiotic resistomes in river sediments from multiple categories, including ARG potential, ARG hosts, pathogenicity potential, co-selection potential and gene transfer potential, and applied it to understand the presence, hosts, and co-occurrence of ARGs in the sediments of an urban river in Beijing. Results showed that a total of 203 ARG subtypes belonging to 21 ARG types were detected in the river sediments with an abundance range of 107.7-1004.1×/Gb, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone and sulfonamide resistance genes. Host-tracking analysis identified Dechloromonas, Pseudoxanthomonas, Arenimonas, Lysobacter and Pseudomonas as the major hosts of ARGs. A number of ARG-carrying contigs (ACCs) were annotated as fragments of pathogenic bacteria and carried multiple multidrug-ARGs. In addition, various biocide/metal resistance genes (B/MRGs) and mobile genetic elements (MGEs), including prophages, plasmids, integrons and transposons, were detected in the river sediments. More importantly, the co-occurrence analysis via ACCs showed a strong association of ARGs with B/MRGs and MGEs, indicating high potential of co-selection and active horizontal transmission for ARGs in the river environment, likely driven by the frequent impact of anthropogenic activities in that area. | 2019 | 30453138 |
| 3169 | 5 | 0.9998 | Plastispheres as reservoirs of antimicrobial resistance: Insights from metagenomic analyses across aquatic environments. Evidence suggests that plastic particles from various environments can accumulate harmful microorganisms and carry bacteria with antimicrobial resistance genes (ARGs). The so-called "plastisphere" might facilitate the spread of pathogens and antimicrobial resistance across environments, posing risks to human and animal health. This study aimed to analyze the diversity and abundance of ARGs found in plastispheres from various aquatic environments, identify clinically relevant pathogenic species, and ascertain bacterial hosts carrying ARGs. We present data from 36 metagenomes collected from plastispheres in different environments (freshwater, raw wastewater, and treated wastewater). The diversity and abundance of ARGs in the resistome of the plastispheres were analyzed through metagenomic methods. A total of 537 high-quality metagenomic-assembled genomes (MAGs) were constructed to identify clinically relevant pathogens and to link the detected ARGs to their bacterial hosts. The results show that the environment has the greatest influence on the abundance and diversity of ARGs in the plastispheres resistome, with the wastewater plastisphere containing a resistome with the highest diversity of ARGs. Resistance to beta-lactams, aminoglycosides, and tetracyclines were the most abundant resistance mechanisms detected in the different plastispheres. The construction of MAGs identified potential pathogens and environmental bacteria that confer resistance to one or several drug classes, with beta-lactams being the most pervasive form of AMR detected. This work enhances our understanding of the plastisphere's role in antimicrobial resistance dissemination and its ecological and public health risks. | 2025 | 40901934 |
| 3177 | 6 | 0.9997 | Metagenomic investigation of antibiotic resistance genes and resistant bacteria contamination in pharmaceutical plant sites in China. Pharmaceutical plant sites play a significant role in the dissemination of antibiotic resistance genes (ARGs) into the environment. It is imperative to comprehensively monitor of ARGs across various environmental media at these sites. This study focused on three pharmaceutical plants, two located in North China and one in South China. Through metagenomic approaches, we examined the composition, mobility potential, and bacterial hosts of ARGs in diverse media such as process water, groundwater, topsoil, soil cores, and pharmaceutical fermentation residues across diverse environmental matrices, including topsoil, soil cores, process water, groundwater, and pharmaceutical fermentation residues. We identified a wide array of ARGs, comprising 21 types and 740 subtypes, with process water exhibiting the highest abundance and diversity. Treatment processes varied in their efficacy in eliminating ARGs, and the clinically relevant ARGs should also be considered when evaluating wastewater treatment plant efficiency. Geographical distinctions in groundwater ARG distribution between northern and southern regions were observed. Soil samples from the three sites showed minimal impact from pharmaceutical activity, with vancomycin-resistance genes being the most prevalent. High levels of ARGs in pharmaceutical fermentation residues underscore the necessity for improved waste management practices. Metagenomic assembly revealed that plasmid-mediated ARGs were more abundant than chromosome-mediated ARGs. Metagenome-assembled genomes (MAGs) analysis identified 166 MAGs, with 62 harboring multiple ARGs. Certain bacteria tended to carry specific types of ARGs, revealing distinct host-resistance associations. This study enhances our understanding of ARG dissemination across different environmental media within pharmaceutical plants and underscores the importance of implementing strict regulations for effluent and residue discharge to control ARG spread. | 2024 | 38960118 |
| 3175 | 7 | 0.9997 | A multi-pronged approach to assessing antimicrobial resistance risks in coastal waters and aquaculture systems. Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, bla(CTX)(-)(M) and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments. | 2024 | 39241380 |
| 6863 | 8 | 0.9997 | Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: A comparison with other global lakes. Lakes are one of the natural reservoirs of antibiotic resistance genes (ARGs) in environments. Long retention times in lakes potentially allow ARGs to persist and may create increased opportunities for the emergence of resistant pathogens. In this study, we investigated the prevalence, source and dissemination risk of ARGs in the sediments of a typical urban lake, Lake Tai (China) which has been a drastic example of water pollution with eutrophication in the world due to its proliferated cyanobacterial blooms. High-throughput profilings of ARGs in the sediments of Lake Tai were characterized with metagenomic assembly, and were compared with those in other global lakes from Australia, Canada, Indonesia, Rwanda and the United States of America. The hosts of ARGs in the sediments of Lake Tai were explored based on the taxonomic annotation of ARG-carrying contigs and network analysis, and a novel recently-discovered crAssphage was employed for source tracking of resistance bacteria. Meanwhile, the potential resistome risk was identified by projecting the co-occurrence of acquired ARGs, mobile genetic elements (MGEs) and human bacterial pathogens into a three-dimensional exposure space. Results showed 321 ARG subtypes belonging to 21 ARG types were detected in the sediments of Lake Tai, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone, mupirocin and trimethoprim resistance genes. Relatively, the ARG levels in the sediments of Lake Tai were significantly higher than those in other global lakes. Source tracking showed the coverages of detected crAssphage in the sediments of Lake Tai were positively correlated with the total ARG coverage, suggesting the contribution of human fecal contamination to the prevalence of ARGs in this lake. It should be noted that the co-occurrence ratio of ARGs, MGEs and human pathogens in the sediments of Lake Tai was higher than that in other global lakes, likely indicating a higher risk for the resistance dissemination in the China's third largest freshwater lake. | 2019 | 30928850 |
| 6864 | 9 | 0.9997 | Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems. | 2021 | 34380279 |
| 6869 | 10 | 0.9997 | Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study. Municipal landfills are hotspot sources of antimicrobial resistance (AMR) and are also important habitats of contaminant-degrading bacteria. However, high diversity of antibiotic resistance genes (ARGs) in landfills hinders assessing AMR risks in the affected environment. More concerned, whether there is co-selection or enrichment of antibiotic-resistant bacteria and contaminant-degrading bacteria in these extremely polluted environments is far less understood. Here, we collected metagenomic datasets of 32 raw leachate and 45 solid waste samples in 22 municipal landfills of China. The antibiotic resistome, antibiotic-resistant bacteria and contaminant-degrading bacteria were explored, and were then compared with other environmental types. Results showed that the antibiotic resistome in landfills contained 1,403 ARG subtypes, with the total abundance over the levels in natural environments and reaching the levels in human feces and sewage. Therein, 49 subtypes were listed as top priority ARGs for future surveillance based on the criteria of enrichment in landfills, mobilizable and present in pathogens. By comparing to those in less contaminated river environments, we elucidated an enrichment of antibiotic-resistant bacteria with contaminant-degrading potentials in landfills. Bacteria in Pseudomonadaceae, Moraxellaceae, Xanthomonadaceae and Enterobacteriaceae deserved the most concerns since 72.2 % of ARG hosts were classified to them. Klebsiella pneumoniae, Acinetobacter nosocomialis and Escherichia coli were abundant multidrug-resistant pathogenic species in raw leachate (∼10.2 % of total microbiomes), but they rarely carried contaminant-degradation genes. Notably, several bacterial genera belonging to Pseudomonadaceae had the most antibiotic-resistant, pathogenic, and contaminant-degrading potentials than other bacteria. Overall, the findings highlight environmental selection for contaminant-degrading antibiotic-resistant pathogens, and provide significant insights into AMR risks in municipal landfills. | 2025 | 39729867 |
| 3266 | 11 | 0.9997 | Abundance and transmission of antibiotic resistance and virulence genes through mobile genetic elements in integrated chicken and fish farming system. Integrated chicken and fish farming systems, common in Bangladesh, present significant public health risks due to the spread of antimicrobial resistance genes (ARGs) and virulence factors (VFGs) through mobile genetic elements (MGEs). This study employs metagenomic sequencing to explore the diversity and abundance of ARGs, VFGs, and MGEs in various environmental samples from these farming systems. A total of 384 ARGs were detected, with tetracycline resistance genes such as tetM and tetX being the most abundant, alongside macrolide-lincosamide-streptogramin and aminoglycoside resistance genes. Droppings harbored the highest proportion of ARGs (62.2%), whereas sediment served as a reservoir for multi-metal resistance genes. Virulence factors associated with immune modulation, such as pvdL and tssH, and biofilm formation genes like algC were particularly prevalent in sediment and droppings. Among MGEs, plasmids and transposons like Tn6072 and Tn4001 were the most abundant, playing a critical role in horizontal gene transfer. Bacterial genera including Bacteroides, Clostridium, and Escherichia were strongly associated with MGEs, indicating their role in the dissemination of resistance and virulence traits. Statistical analyses revealed significant differences in the abundance of ARGs, VFGs, and MGEs across sample types, with sediment and droppings identified as hotspots for gene exchange. These findings underscore the urgent need for improved antibiotic stewardship and waste management practices to limit the spread of antimicrobial resistance and pathogenic bacteria within integrated farming environments. | 2025 | 40595289 |
| 6804 | 12 | 0.9997 | Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs. | 2024 | 38636860 |
| 6862 | 13 | 0.9997 | Strong variation in sedimental antibiotic resistomes among urban rivers, estuaries and coastal oceans: Evidence from a river-connected coastal water ecosystem in northern China. Sediment is thought to be a vital reservoir to spread antibiotic resistance genes (ARGs) among various natural environments. However, the spatial distribution patterns of the sedimental antibiotic resistomes around the Bohai Bay region, a river-connected coastal water ecosystem, are still poorly understood. The present study conducted a comprehensive investigation of ARGs among urban rivers (UR), estuaries (ES) and Bohai Bay (BHB) by metagenomic sequencing. Overall, a total of 169 unique ARGs conferring resistance to 15 antimicrobial classes were detected across all sediment samples. The Kruskal-Wallis test showed that the diversity and abundance of ARGs in the UR were all significantly higher than those in the ES and BHB (p < 0.05 and p < 0.01), revealing the distance dilution of the sedimental resistomes from the river to the ocean. Multidrug resistance genes contained most of the ARG subtypes, whereas rifamycin resistance genes were the most abundant ARGs in this region. Our study demonstrated that most antimicrobial resistomes were highly accumulated in urban river sediments, whereas beta-lactamase resistance genes (mainly PNGM-1) dramatically increased away from the estuary to the open ocean. The relative abundance of mobile genetic elements (MGEs) also gradually decreased from rivers to the coastal ocean, whereas the difference in pathogenic bacteria was not significant in the three classifications. Among MGEs, plasmids were recognized as the most important carriers to support the horizontal gene transfer of ARGs within and between species. According to co-occurrence networks, pathogenic Proteobacteria, Actinobacteria, and Bacteroidetes were recognized as potential and important hosts of ARGs. Heavy metals, pH and moisture content were all recognized as the vital environmental factors influencing the distribution of ARGs in sediment samples. Overall, the present study may help to understand the distribution patterns of ARGs at a watershed scale, and help to make effective policies to control the emergence, spread and evolution of different ARG subtypes in different habitats. | 2023 | 37263036 |
| 3249 | 14 | 0.9997 | Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs. | 2024 | 39412549 |
| 3269 | 15 | 0.9997 | Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propagation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial community structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assessment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people's lives at risk of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches. | 2023 | 35939194 |
| 6879 | 16 | 0.9997 | Airborne antibiotic and metal resistance genes - A neglected potential risk at e-waste recycling facilities. Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems. | 2024 | 38365028 |
| 6874 | 17 | 0.9997 | River Ganges water as reservoir of microbes with antibiotic and metal ion resistance genes: High throughput metagenomic approach. The large scale usage of antibiotics and trace elements leads to their progressive release in the environment, and ultimately the spread of antibiotic resistance genes (ARGs) and metal ion resistance genes (MRGs) in bacteria. A high-throughput metagenomic sequencing of the microbial community in water and sediments in the river Ganges harboring resistance genes was performed. The results revealed that the river harbors a broad spectrum of resistance genes with high abundance in sediments. The highly dominant ARGs type was beta-lactam, multidrug/efflux and elfamycin. The ARGs such as (tuf, parY, ileS, mfd) were highly abundant in water and sediments. The MRGs subtype acn was the most abundant metal resistance gene in water and sediments. Majority of ARGs types showed significant (p ≤ 0.05) positive correlation with the MRGs types in the river environment suggesting their distribution and transfer to be possibly linked. Taxonomic classification revealed that Proteobacteria and Actinobacteria were the two most abundant phyla in water and sediments. Arcobacter, Terrimicrobium, Acidibacter and Pseudomonas were the most abundant genera. This study suggests that antibiotics and metals are the driving force for the emergence of resistance genes, and their subsequent propagation and accumulation in the environmental bacteria. The present metagenomic investigation highlights significance of such study, and attracts attention for the mitigation of pollutants associated with the propagation of ARGs and MRGs in the river environment. | 2019 | 30579213 |
| 6860 | 18 | 0.9997 | Impact of coastal deoxygenation on antibiotic resistance gene profiles in size-fractionated bacterial communities. Oxygen loss disrupts marine ecosystems, threatening biodiversity and causing mass mortality of marine life. Antibiotic resistance genes (ARGs) pose a significant threat to human health by promoting the spread of resistant pathogens, making infections harder to treat and increasing mortality risks. However, the interplay between deoxygenation and ARG dynamics remains poorly understood. In this study, we employed time-series metagenomics to investigate the responses of ARG profiles in free-living (FL) and particle-associated (PA) fraction to oxygen loss during a 22-day summer deoxygenation event in the East China Sea. In total, we identified 1,186 ARG subtypes and 2,279 mobile genetic element (MGE) subtypes. The most dominant resistance classes of antibiotics were multidrug (23.5%), followed by tetracycline (15%), macrolide-lincosamide-streptogramin (13.4%), peptide (10.3%), glycopeptide (8.7%), aminoglycoside (7.3%), and beta-lactam (4.9%). We found that ARG richness in FL fraction increased with declining oxygen levels, particularly for beta-lactam and multidrug class, while no significant relationship was observed in the PA fraction. Although the total relative abundance of ARGs in both fraction showed no significant oxygen dependence, beta-lactam and multidrug resistance genes in FL fraction significantly increased with oxygen loss. Co-occurrence network analysis revealed stronger positive associations between ARGs and MGEs in the FL fraction, suggesting enhanced gene transfer among environmental bacteria. Furthermore, neutral community model analysis indicated that stochastic processes also played an interactive role in shaping ARG composition dynamics in both bacterial fractions. Our findings provide evidence that coastal deoxygenation preferentially enriches high-risk ARGs (e.g., beta-lactamase genes) in FL bacteria through MGE-mediated transfer, highlighting escalating antibiotic resistance risks that threaten both ecosystem and human health under climate warming. This study offers a framework for size-fractionated ARG monitoring and targeted mitigation strategies in coastal ecosystems. | 2025 | 40669246 |
| 7371 | 19 | 0.9997 | Plastisphere and the occurrence of antibiotic resistance in a 40-year-old abandoned coastal landfill site in Chile. Plastispheres are microbial communities that inhabit plastic surfaces and have been extensively studied in aquatic environments. However, little is known about their occurrence in landfills. We investigated plastisphere communities in a 40-year-old coastal abandoned landfill in Rocuant-Andalién, Chile, and aimed to characterize landfill plastisphere communities and assess their potential role as reservoirs of antibiotic resistance genes (ARGs). High-density polyethylene was the predominant plastic type (56 %). Microscopy revealed diverse bacterial morphotypes, including bacilli, cocci, and filamentous forms, forming clusters on plastic surfaces. 16S rRNA gene sequencing revealed that Actinobacteria, Firmicutes, and Proteobacteria dominated most samples, with high overall diversity and richness. Beta diversity analysis indicated significant variation in bacterial communities among sites but not among polymer types. Notably, the intI1 gene, associated with the spread of antibiotic resistance, was detected at 67 % of the sampled sites. These findings reveal that landfills act as reservoirs for a wide range of bacteria, some of which may have clinical significance, highlighting their ecological and public health impact. Furthermore, plastics are likely to transport resistance genes originating from human activities, spreading them into nearby ecosystems, such as wetlands and oceans, where they interact with wildlife. | 2025 | 41109620 |