# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3166 | 0 | 1.0000 | Sludge amended soil induced multidrug and heavy metal resistance in endophytic Exiguobacterium sp. E21L: genomics evidences. The emergence of multidrug-resistant bacteria in agro-environments poses serious risks to public health and ecological balance. In this study, Exiguobacterium sp. E21L, an endophytic strain, was isolated from carrot leaves cultivated in soil amended with sewage treatment plant-derived sludge. The strain exhibited resistance to clinically relevant antibiotics, including beta-lactams, fluoroquinolones, aminoglycosides, and macrolides, with a high Multi-Antibiotic Resistance Index of 0.88. Whole-genome sequencing revealed a genome of 3.06 Mb, encoding 3894 protein-coding genes, including antimicrobial resistance genes (ARGs) such as blaNDM, ermF, tetW, and sul1, along with heavy metal resistance genes (HMRGs) like czcD, copB, and nikA. Genomic islands carrying ARGs and stress-related genes suggested potential horizontal gene transfer. The strain demonstrated robust biofilm formation, high cell hydrophobicity (> 80%), and significant auto-aggregation (90% at 48 h), correlating with genes associated with motility, quorum sensing, and stress adaptation. Notably, phenotypic assays confirmed survival under simulated gastrointestinal conditions, emphasizing its resilience in host-associated environments. Comparative genomics positioned Exiguobacterium sp. E21L near Exiguobacterium chiriqhucha RW-2, with a core genome of 2716 conserved genes. Functional annotations revealed genes involved in xenobiotic degradation, multidrug efflux pumps, and ABC-type transporters, indicating versatile resistance mechanisms and metabolic capabilities. The presence of ARGs, HMRGs, and MGEs (mobile genetic elements) highlights the potential role of Exiguobacterium sp. E21L as a reservoir for resistance determinants in agricultural ecosystems. These findings emphasized the need for stringent regulations on sludge-based fertilizers and advanced sludge treatment strategies to mitigate AMR risks in agro-environments. | 2025 | 40148599 |
| 3268 | 1 | 0.9995 | Resistomic features and novel genetic element identified in hospital wastewater with short- and long-read metagenomics. The global spread of antimicrobial resistance (AMR) poses a serious threat to public health, with hospital wastewater treatment plants (WWTPs) recognized as a key hotspot for resistant pathogens and antibiotic resistance genes (ARGs). This study employed advanced hybrid sequencing platforms to provide a comprehensive resistomic analysis of a Qingdao WWTP in China, revealing previously uncovered AMR transmission risks. We identified 175 ARG subtypes conferring resistance to 38 antimicrobials, including the last-resort antibiotics, highlighting the extensive and concerning resistance reservoir within this environment. Multidrug resistance genes predominated, followed by ARGs targeting aminoglycoside, β-lactam, tetracycline, glycopeptide, and macrolide classes, reflecting clinically relevant resistance patterns. Co-occurrence analysis revealed ARGs were strongly associated with mobile genetic elements, especially for ARGs targeting sulfonamide, glycopeptide, macrolide, tetracycline, aminoglycoside, and β-lactam classes, providing concrete evidence of their high dissemination potential. A striking 85 % of 131 metagenome-assembled genomes (MAGs) carried ARGs, demonstrating prevalent resistance in the wastewater microbiome. Furthermore, the identification of several rarely studied genomic islands (GIs), including those conferring resistance to antibiotics and heavy metals, and notably, the novel variant GIAS409 carrying transposases and heavy metal resistance operons, reveals a significant and previously neglected mechanism for co-selection and dissemination. This study significantly advances our understanding of AMR dynamics in hospital WWTPs, demonstrating that current treatment approaches (42 % ARG removal) have limited efficacy and that WWTP may serve as potential hotspots for multidrug resistance development. Collectively, these findings emphasize the urgent need for improved wastewater management to safeguard public health. | 2025 | 40915207 |
| 6880 | 2 | 0.9994 | Co-occurrence and co-expression of antibiotic, biocide, and metal resistance genes with mobile genetic elements in microbial communities subjected to long-term antibiotic pressure: Novel insights from metagenomics and metatranscriptomics. The burgeoning of antibiotic resistance has emerged as a pressing global challenge. To gain a deeper understanding of the interactions between antibiotic resistance genes (ARGs), biocide and metal resistance genes (BRGs&MRGs), and mobile genetic elements (MGEs), this study utilized metagenomics and metatranscriptomics to investigate their co-occurrence and co-expression in two consortia subjected to long-term exposure to chloramphenicol and lincomycin. Long-term exposure to these antibiotics resulted in significant disparities in resistance profiles: Consortium(CAP) harbored 130 ARGs and 150 BRGs&MRGs, while Consortium(LIN) contained 57 ARGs and 32 BRGs&MRGs. Horizontal gene transfer (HGT) events were predicted at 125 and 300 instances in Consortium(CAP) and Consortium(LIN), respectively, facilitating the emergence of multidrug-resistant bacteria, such as Caballeronia (10 ARGs, 2 BRGs&MRGs), Cupriavidus (2 ARGs, 10 BRGs&MRGs), and Bacillus (14 ARGs, 21 BRGs&MRGs). Chloramphenicol exposure significantly enriched genes linked to phenicol resistance (floR, capO) and co-expressed ARGs and BRGs&MRGs, while lincomycin exerted narrower effects on resistance genes. Additionally, both antibiotics modulated the expression of degradation genes and virulence factors, highlighting their role in altering bacterial substrate utilization and pathogenic traits. This study provides quantitative insights into the impact of antibiotics on microbial resistance profiles and functions at both DNA and RNA levels, highlighting the importance of reducing antibiotic pollution and limiting the spread of resistance genes in the environment. | 2025 | 39965334 |
| 3437 | 3 | 0.9994 | Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying ≥ 2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations. | 2018 | 29332216 |
| 3252 | 4 | 0.9994 | Exploring phylogenetic diversity of antibiotic resistance genes in activated sludge: A host and genomic location perspective. Antibiotic resistance has emerged as a significant global public health issue. The environmental behaviors of antibiotic resistance genes (ARGs), such as their persistence and horizontal transfer, have been extensively investigated. However, the genetic diversity characteristics of ARGs remain underexplored, which limits a comprehensive analysis of their roles in the environment. In this study, we examined the genetic diversity of ARGs in activated sludge from 44 wastewater treatment plants in five countries. Most ARGs detected in activated sludge possessed multiple variants, with a median of 48. The number of variants of gd-ARGs varied among different resistance mechanisms and ARG types. The number of potential variants of ARGs was strongly correlated with host diversity. Pseudomonas spp. and Klebsiella pneumoniae, identified as pathogenic bacteria, harbored multiple ARGs and had the most variants. Most ARG subtypes on plasmids and chromosomes showed divergent evolution. Molecular docking of AdeH proteins revealed that genomic location affects tetracycline binding energy. The findings underscore the intricate interplay between genetic variation and environmental adaptation in ARGs, offering a novel perspective on the spread of antibiotic resistance. | 2025 | 40216056 |
| 7721 | 5 | 0.9994 | Unveiling plasmid diversity and functionality in pristine groundwater. BACKGROUND: Plasmids are key in creating a dynamic reservoir of genetic diversity, yet their impact on Earth's continental subsurface-an important microbial reservoir-remains unresolved. We analyzed 32 metagenomic samples from six groundwater wells within a hillslope aquifer system to assess the genetic and functional diversity of plasmids and to evaluate the role of these plasmids in horizontal gene transfer (HGT). RESULTS: Our results revealed 4,609 non-redundant mobile genetic elements (MGEs), with 14% (664) confidently classified as plasmids. These plasmids displayed well-specific populations, with fewer than 15% shared across wells. Plasmids were linked to diverse microbial phyla, including Pseudomonadota (42.17%), Nitrospirota (3.31%), Candidate Phyla Radiation (CPR) bacteria (2.56%), and Omnitrophota (2.11%). The presence of plasmids in the dominant CPR bacteria is significant, as this group remains underexplored in this context. Plasmid composition strongly correlated with well-specific microbial communities, suggesting local selection pressures. Functional analyses highlighted that conjugative plasmids carry genes crucial for metabolic processes, such as cobalamin biosynthesis and hydrocarbon degradation. Importantly, we found no evidence of high confidence emerging antibiotic resistance genes, contrasting with findings from sewage and polluted groundwater. CONCLUSIONS: Overall, our study emphasizes the diversity, composition, and eco-evolutionary role of plasmids in the groundwater microbiome. The absence of known antibiotic resistance genes highlights the need to preserve groundwater in its pristine state to safeguard its unique genetic and functional landscape. | 2025 | 40275408 |
| 6891 | 6 | 0.9994 | Feedstock-dependent antibiotic resistance gene patterns and expression profiles in industrial scale biogas plants revealed by meta-omics technology. This study investigated antimicrobial resistance in the anaerobic digesters of two industrial-scale biogas plants processing agricultural biomass and municipal wastewater sludge. A combination of deep sequencing and genome-centric workflow was implemented for metagenomic and metatranscriptomics data analysis to comprehensively examine potential antimicrobial resistance in microbial communities. Anaerobic microbes were found to harbour numerous antibiotic resistance genes (ARGs), with 58.85% of the metagenome-assembled genomes (MAGs) harbouring antibiotic resistance. A moderately positive correlation was observed between the abundance and expression of ARGs. ARGs were located primarily on bacterial chromosomes. A higher expression of resistance genes was observed on plasmids than on chromosomes. Risk index assessment suggests that most ARGs identified posed a significant risk to human health. However, potentially pathogenic bacteria showed lower ARG expression than non-pathogenic ones, indicating that anaerobic treatment is effective against pathogenic microbes. Resistomes at the gene category level were associated with various antibiotic resistance categories, including multidrug resistance, beta-lactams, glycopeptides, peptides, and macrolide-lincosamide-streptogramin (MLS). Differential expression analysis revealed specific genes associated with potential pathogenicity, emphasizing the importance of active gene expression in assessing the risks associated with ARGs. | 2025 | 39461216 |
| 7714 | 7 | 0.9994 | Functional traits and health implications of the global household drinking-water microbiome retrieved using an integrative genome-centric approach. The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents. We reconstructed 859 high-quality metagenome-assembled genomes (MAGs) spanning 27 bacterial and 2 archaeal phyla, and found that the core MAGs belonging to the phylum Proteobacteria encoded the highest metabolic functional diversity of the 33 key complete metabolic modules. In particular, we found that two core MAGs of Brevibacillus and Methylomona encoded genes for methane metabolism, which may support the growth of heterotrophic organisms observed in the oligotrophic ecosystem. Four MAGs of complete ammonia oxidation (comammox) Nitrospira were identified and functional metabolic analysis suggested these may enable mixotrophic growth and encode genes for reactive oxygen stress defence and arsenite reduction that could aid survival in the environment of oligotrophic drinking water systems. Four MAGs were annotated as potentially pathogenic bacteria (PPB) and thus represented a possible public health concern. They belonged to the genera Acinetobacter (n = 3) and Mycobacterium (n = 1), with a total relative abundance of 1.06 % in all samples. The genomes of PPB A. junii and A. ursingii were discovered to contain antibiotic resistance genes and mobile genetic elements that could contribute to antimicrobial dissemination in drinking water. Further network analysis suggested that symbiotic microbes which support the growth of pathogenic bacteria can be targets for future surveillance and removal. | 2024 | 38183799 |
| 3094 | 8 | 0.9994 | Metagenomics-based analysis of mobile genetic elements and antibiotic/metal resistance genes carried by treated wastewater. Wastewater treatment plants in Tunisia are recognized as key locations for the spread of antibiotic and heavy metal resistance genes among bacteria. Despite the widespread presence of pollutants in these treatment systems, there is still a significant gap in our understanding of resistance dynamics. This study focused on analyzing the bacterial community and resistome-mobilome profiles of the Charguia wastewater treatment plant (WWTP). Using metagenomics sequencing, six samples from the influent, sludge, and effluent were thoroughly examined. Our research findings indicated the prevalence of Proteobacteria and high levels of Bacteroidota, Firmicutes, Campylobacterota, and Patescibacteria. After conducting a species level analysis, we identified important species such as Pseudomonas psychrophila, Pseudomonas fragi, Pseudomonas lundensis, Acinetobacter johnsonii, and Thiothrix unzii linked to antibiotic resistant genes (ARGs) like mdtA and merR1 and heavy metal resistance genes (MRGs), including czcA and cnrA. Our study illustrated the persistence of specific species in the effluent due to the co-occurrence of ARGs/MRGs and mobile genetic elements (MGE). Notably, IncQ and IncP were found to be associated with mdtA, mexR, arsR1, and merR. The conclusions drawn from our research suggest that the WWTP has been potentially effective in reducing multidrug resistance. | 2025 | 40718788 |
| 3233 | 9 | 0.9994 | A Metagenomic Investigation of Potential Health Risks and Element Cycling Functions of Bacteria and Viruses in Wastewater Treatment Plants. The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions. | 2024 | 38675877 |
| 7718 | 10 | 0.9993 | Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. With the presence of 36 phyla, 326 families and 985 genera, the fish gut microbiota was found to be quite diverse in nature. However, at the phylum level, more than three-fourths of gut microbes belonged to Proteobacteria. Very low prevalence of commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) in fish gut suggested the need to search for alternative probiotics for aquaculture use. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy metabolism (4%) and fermentation (2%). In conformity with herbivorous feeding habit of L. rohita, gut microbiome also had pathways for the degradation of cellulose, hemicellulose, chitin, pectin, starch, and other complex carbohydrates. High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment. The role of ARGs in fish gut microbiome needs further investigations. | 2019 | 30604012 |
| 3344 | 11 | 0.9993 | Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BACKGROUND: Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. RESULTS: Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative (p < 0.0001) and carry toxin-antitoxin systems (p < 0.0001) than plasmids without resistance genes. CONCLUSIONS: This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions. | 2015 | 26576951 |
| 3850 | 12 | 0.9993 | Molecular Evidence for Occurrence of Heavy Metal and Antibiotic Resistance Genes Among Predominant Metal Tolerant Pseudomonas sp. and Serratia sp. Prevalent in the Teesta River. Riverine ecosystems polluted by pharmaceutical and metal industries are potential incubators of bacteria with dual resistance to heavy metals and antibiotics. The processes of co-resistance and cross resistance that empower bacteria to negotiate these challenges, strongly endorse dangers of antibiotic resistance generated by metal stress. Therefore, investigation into the molecular evidence of heavy metal and antibiotic resistance genes was the prime focus of this study. The selected Pseudomonas and Serratia species isolates evinced by their minimum inhibitory concentration and multiple antibiotic resistance (MAR) index showed significant heavy metal tolerance and multi-antibiotic resistance capability, respectively. Consequently, isolates with higher tolerance for the most toxic metal cadmium evinced high MAR index value (0.53 for Pseudomonas sp., and 0.46 for Serratia sp.) in the present investigation. Metal tolerance genes belonging to P(IB)-type and resistance nodulation division family of proteins were evident in these isolates. The antibiotic resistance genes like mexB, mexF and mexY occurred in Pseudomonas isolates while sdeB genes were present in Serratia isolates. Phylogenetic incongruency and GC composition analysis of P(IB)-type genes suggested that some of these isolates had acquired resistance through horizontal gene transfer (HGT). Therefore, the Teesta River has become a reservoir for resistant gene exchange or movement via selective pressure exerted by metals and antibiotics. The resultant adaptive mechanisms and altered phenotypes are potential tools to track metal tolerant strains with clinically significant antibiotic resistance traits. | 2023 | 37227565 |
| 3263 | 13 | 0.9993 | Short- and long-read metagenomics insight into the genetic contexts and hosts of mobile antibiotic resistome in Chinese swine farms. Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Intensive swine farms are recognized as hotspots for antibiotic resistance genes (ARGs). However, antibiotic resistome and their genetic contexts, hosts, and transferability in Chinese swine farms remain largely unexplored. Here, we used Illumina and Oxford Nanopore metagenomics sequencing to investigate the antibiotic resistome context of 14 distantly located large-scale (10,000 animals per year) commercial swine farms in China. We identified high abundant and diverse ARGs (609,966.8 with 1433 types, belonging to 38 different antibiotic classes) in all samples, including those encoding resistance to clinically critical important antibiotics (such as mcr, tetX, optrA, poxtA, qnr and bla(CTX-M)). About 75% of the ARGs detected were carried by mobile genetic elements (mainly plasmids), suggesting their high transmission potential into receiving environments. Host-tracking analysis identified Clostridiales, Faecalibacterium prausnitzii and Escherichia coli as the predominant bacterial hosts of mobile ARGs. Notably, genome binning generated 246 high-completeness draft genomes. Genetic context analysis of the multiple resistant (MDR) genes in binned genomes showed the involvement of insertion sequences (ISs), integron and SGI2 genomic island, implying their importance role in promoting the development of MDR bacteria. Overall, these findings substantially expand our current knowledge of mobile antibiotic resistome in Chinese swine farms, and suggest reasonable management of animal wastes in swine farms to reduce the dissemination of antibiotic resistance to the environment. | 2022 | 35259381 |
| 3853 | 14 | 0.9993 | Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome. | 2020 | 32302839 |
| 6887 | 15 | 0.9993 | Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms. | 2024 | 38013098 |
| 3334 | 16 | 0.9993 | Metagenomic profiling of antibiotic resistance genes in Red Sea brine pools. Antibiotic resistance (AR) is an alarming global health concern, causing an annual death rate of more than 35,000 deaths in the US. AR is a natural phenomenon, reported in several pristine environments. In this study, we report AR in pristine Red Sea deep brine pools. Antimicrobial resistance genes (ARGs) were detected for several drug classes with tetracycline and macrolide resistance being the most abundant. As expected, ARGs abundance increased in accordance with the level of human impact with pristine Red Sea samples having the lowest mean ARG level followed by estuary samples, while activated sludge samples showed a significantly higher ARG level. ARG hierarchical clustering grouped drug classes for which resistance was detected in Atlantis II Deep brine pool independent of the rest of the samples. ARG abundance was significantly lower in the Discovery Deep brine pool. A correlation between integrons and ARGs abundance in brine pristine samples could be detected, while insertion sequences and plasmids showed a correlation with ARGs abundance in human-impacted samples not seen in brine pristine samples. This suggests different roles of distinct mobile genetic elements (MGEs) in ARG distribution in pristine versus human-impacted sites. Additionally, we showed the presence of mobile antibiotic resistance genes in the Atlantis II brine pool as evidenced by the co-existence of integrases and plasmid replication proteins on the same contigs harboring predicted multidrug-resistant efflux pumps. This study addresses the role of non-pathogenic environmental bacteria as a silent reservoir for ARGs, and the possible horizontal gene transfer mechanism mediating ARG acquisition. | 2023 | 37061654 |
| 4548 | 17 | 0.9993 | Metatranscriptomic Analysis Reveals Actively Expressed Antimicrobial-Resistant Genes and Their Hosts in Hospital Wastewater. Antimicrobial resistance is a major global concern and economic threat, necessitating a reliable monitoring approach to understand its frequency and spread via the environment. Hospital wastewater serves as a critical reservoir for antimicrobial-resistant organisms; however, its role in resistance gene distribution and dissemination remains poorly understood. This study integrates metagenomic and metatranscriptomic analyses, elucidating the dynamics of antimicrobial resistance in hospital wastewater. Integrated metagenomic and metatranscriptomic sequencing were used to identify actively expressed antimicrobial-resistant genes and antimicrobial-resistant bacteria, offering comprehensive insights into antimicrobial resistance dynamics in hospital wastewater. Liquid chromatography-tandem mass spectrometry analysis revealed the presence of ampicillin, sulbactam, levofloxacin, sulfamethoxazole, and trimethoprim in the sample, which could apply selective pressure on antimicrobial resistance gene expression. While multidrug resistance genes were the most prevalent sequences in both metagenome-assembled genomes and plasmids, plasmid-derived sequences showed a high mRNA/DNA ratio, emphasizing the presence of functionally expressed antimicrobial resistance genes on plasmids rather than on chromosomes. The metagenomic and metatranscriptomic analyses revealed Serratia nevei MAG14 with high mRNA levels of antimicrobial resistance genes; moreover, multidrug-resistant Serratia sp., genetically related to MAG14, was isolated from the wastewater, supporting the phenotypic characterization of crucial antimicrobial-resistant bacteria and validating the genome analysis results. The findings underscore key genes and bacteria as targets for antimicrobial resistance surveillance in hospital wastewater to protect public and environmental health. | 2024 | 39766512 |
| 3851 | 18 | 0.9993 | Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. BACKGROUND: Drug-resistant fish pathogens can cause significant economic loss to fish farmers. Since 2012, florfenicol has become an approved drug for treating both septicemia and columnaris diseases in freshwater fish. Due to the limited drug options available for aquaculture, the impact of the therapeutical florfenicol treatment on the microbiota landscape as well as the resistome present in the aquaculture farm environment needs to be evaluated. RESULTS: Time-series metagenomic analyses were conducted to the aquatic microbiota present in the tank-based catfish production systems, in which catfish received standard therapeutic 10-day florfenicol treatment following the federal veterinary regulations. Results showed that the florfenicol treatment shifted the structure of the microbiota and reduced the biodiversity of it by acting as a strong stressor. Planctomycetes, Chloroflexi, and 13 other phyla were susceptible to the florfenicol treatment and their abundance was inhibited by the treatment. In contrast, the abundance of several bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia phyla increased. These bacteria with increased abundance either harbor florfenicol-resistant genes (FRGs) or had beneficial mutations. The florfenicol treatment promoted the proliferation of florfenicol-resistant genes. The copy number of phenicol-specific resistance genes as well as multiple classes of antibiotic-resistant genes (ARGs) exhibited strong correlations across different genetic exchange communities (p < 0.05), indicating the horizontal transfer of florfenicol-resistant genes among these bacterial species or genera. Florfenicol treatment also induced mutation-driven resistance. Significant changes in single-nucleotide polymorphism (SNP) allele frequencies were observed in membrane transporters, genes involved in recombination, and in genes with primary functions of a resistance phenotype. CONCLUSIONS: The therapeutical level of florfenicol treatment significantly altered the microbiome and resistome present in catfish tanks. Both intra-population and inter-population horizontal ARG transfer was observed, with the intra-population transfer being more common. The oxazolidinone/phenicol-resistant gene optrA was the most prevalent transferred ARG. In addition to horizontal gene transfer, bacteria could also acquire florfenicol resistance by regulating the innate efflux systems via mutations. The observations made by this study are of great importance for guiding the strategic use of florfenicol, thus preventing the formation, persistence, and spreading of florfenicol-resistant bacteria and resistance genes in aquaculture. | 2019 | 31818316 |
| 3096 | 19 | 0.9993 | Evaluating the effects of hospital wastewater treatment on bacterial composition and antimicrobial resistome. Hospital wastewater treatment systems (HWTS) are crucial in reducing the spread of antimicrobial resistance genes (ARGs) and antibiotic-resistant bacterial pathogens in hospital wastewater. This study aims to evaluate the impact of HWTS on the changes of bacterial composition and the relative abundance of ARGs. We collected wastewater samples from influent and effluent in a university hospital, and performed metagenomic sequencing. The results showed that HWTS altered the bacterial composition, with a decrease in the proportion of Gammaproteobacteria. However, phylogenetic analysis of metagenome-assembled genomes showed that Mycobacterium and Zoogloea from influent and effluent had a close relationship. A total of 140 non-redundant ARGs were identified based on open reading fragments analysis, with beta-lactam and aminoglycoside resistance genes being the most prevalent. The relative abundance of ARGs generally decreased after wastewater treatment (p < 0.0001), with 70.0% of genes that conferring resistance to "last-resort" antibiotics being undetectable in the effluent. However, the relative abundance of quaternary ammonium compounds resistance genes increased in the effluent. We identified that 66.4% of ARGs were located on plasmids, and 17.9% of ARGs were adjacent to mobile gene elements (MGEs), suggesting their potential for mobility. Subsequent analysis showed that ARGs originating from plasmids and adjacent to MGEs were negatively associated with their relative abundance reduction. In conclusion, this study provides a comprehensive evaluation of the impact of HWTS on composition of bacteria and the relative abundance of ARGs, highlighting the importance of effective wastewater treatment in combating the spread of antimicrobial resistance. | 2025 | 41113647 |