# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3155 | 0 | 1.0000 | In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. The use of shotgun metagenomic sequencing to understand ecological-level spread of microbes and their genes has provided new insights for the prevention, surveillance and control of microbial contaminants in the slaughterhouse environment. Here, microbial samples were collected from products and surrounding areas though a porcine slaughter process; shotgun metagenomic DNA-sequencing of these samples revealed a high community diversity within the porcine slaughterhouse and pork products, in zones originating from animal arrival through to the sale zones. Bacteria were more prevalent in the first zones, such as arrival- and anesthesia-zones, and DNA viruses were prevalent in the scorching-and-whip zone, animal products and sale zone. Data revealed the dominance of Firmicutes and Proteobacteria phyla followed by Actinobacteria, with a clear shift in the relative abundance of lactic acid bacteria (mainly Lactobacillus sp.) from early slaughtering steps to Proteobacteria and then to viruses suggesting site-specific community compositions occur in the slaughterhouse. Porcine-type-C oncovirus was the main virus found in slaughterhouse, which causes malignant diseases in animals and humans. As such, to guarantee food safety in a slaughterhouse, a better decipher of ecology and adaptation strategies of microbes becomes crucial. Analysis of functional genes further revealed high abundance of diverse genes associated with stress, especially in early zones (animal and environmental surfaces of arrival zone with 57,710 and 40,806 genes, respectively); SOS responsive genes represented the most prevalent, possibly associated with genomic changes responsible of biofilm formation, stringent response, heat shock, antimicrobial production and antibiotic response. The presence of several antibiotic resistance genes suggests horizontal gene transfer, thus increasing the likelihood for resistance selection in human pathogens. These findings are of great concern, with the suggestion to focus control measures and establish good disinfection strategies to avoid gene spread and microbial contaminants (bacteria and viruses) from the animal surface into the food chain and environment, which was achieved by applying HLE disinfectant after washing with detergent. | 2020 | 32846568 |
| 3875 | 1 | 0.9998 | Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture. | 2025 | 39752189 |
| 6596 | 2 | 0.9998 | Shotgun metagenomic sequencing of bulk tank milk filters reveals the role of Moraxellaceae and Enterobacteriaceae as carriers of antimicrobial resistance genes. In the present context of growing antimicrobial resistance (AMR) concern, understanding the distribution of AMR determinants in food matrices such as milk is crucial to protect consumers and maintain high food safety standards. Herein, the resistome of different dairy farms was investigated through a shotgun metagenomic sequencing approach, taking advantage of in-line milk filters as promising tools. The application of both the reads-based and the assembly-based approaches has allowed the identification of numerous AMR determinants, enabling a comprehensive resolution of the resistome. Notably most of the species harboring AMR genes were predicted to be Gram-negative genera, namely Enterobacter, Acinetobacter, Escherichia, and Pseudomonas, pointing out the role of these bacteria as reservoirs of AMR determinants. In this context, the use of de novo assembly has allowed a more holistic AMR detection strategy, while the reads-based approach has enabled the detection of AMR genes from low abundance bacteria, usually undetectable by assembly-based methods. The application of both reads-based and assembly-based approaches, despite being computationally demanding, has facilitated the comprehensive characterization of a food chain resistome, while also allowing the construction of complete metagenome assembled genomes and the investigation of mobile genetic elements. Our findings suggest that milk filters can successfully be used to investigate the resistome of bulk tank milk through the application of the shotgun metagenomic sequencing. In accordance with our results, raw milk can be considered a source of AMR bacteria and genes; this points out the importance of properly informing food business operators about the risk associated with poor hygiene practices in the dairy production environment and consumers of the potential microbial food safety risks derived from raw milk products consumption. Translating these findings as risk assessment outputs heralds the next generation of food safety controls. | 2022 | 35840264 |
| 3254 | 3 | 0.9998 | Temporal trends of antibiotic resistance in culturable bacteria reveal the role of potential pathogens as pioneering carriers and resistance accumulators. Understanding the occurrence and temporal trends of antibiotic resistance genes (ARGs) within bacteria is crucial for controlling and predicting the proliferation of antibiotic-resistant bacteria. However, gaps remain in understanding the long-term trends across different bacterial species and in assessing related health risks. We collected 22,360 bacterial complete genome sequences with collection time and compiled a temporal dataset of ARGs in culturable bacteria. Our results revealed the widespread presence of ARGs among culturable bacterial species, with potential pathogens carrying significantly more ARGs than non-pathogenic species. Temporal trend analysis revealed that only 11.0 % of bacterial species experienced an increase of more than one unit in ARG quantity and diversity over one century, with 83.3 % of them being potential pathogenic species. The temporal accumulation of ARGs in many potential pathogenic species is influenced by the abundance of mobile genetic elements, with several species also exhibiting temporal accumulation of plasmid-borne ARGs. Notably, Shigella flexneri and Klebsiella pneumoniae exhibited an accumulation of high-risk ARGs associated with at least five antibiotic types over at least 40 years. Furthermore, the distribution of ARG-carrying strains before the use of antibiotics revealed a wide range of bacterial species and antibiotic types for intrinsic resistance, including some synthetic antibiotics. This work reveals the significant role of potential pathogens in the expansion of antibiotic resistance and highlights the importance of strengthening vigilance against the emergence of novel multidrug-resistant pathogens. | 2025 | 40712179 |
| 3156 | 4 | 0.9998 | Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain. We aimed to better understand resistome and virulome patterns on animal and process-area surfaces through a pig slaughterhouse to track possible contamination within the food production chain. Culture-dependent methods revealed high levels of microbial contamination, corresponding to mesophilic and pathogenic bacteria on both the animal and process-area surfaces mainly in the anesthesia (AA and AS) zone followed by "scorching and whip" (FA and FS) zone and also in the end products. To evaluate the potential risk of antibiotic resistance and virulence determinants, shotgun metagenomic DNA-sequencing of isolates from selected areas/products uncovered a high diversity and richness of antibiotic resistance genes (ARGs): 55-62 genes in the anesthesia area (AA and AS) and 35-40 in "animal-arrival zone" (MA and MS). The "scorching and whip" (FA and FS) area, however, exhibited lowered abundance of ARGs (1-6), indicating that the scalding and depilating process (an intermediate zone between "anesthesia" and "scorching and whip") significantly decreased bacterial load by 1-3 log(10) but also diminished the resistome. The high prevalence of antibiotic-inactivating enzyme genes in the "animal-arrival zone" (60-65%) and "anesthesia" area (56%) were mainly represented by those for aminoglycoside (46-51%) and lincosamide (14-19%) resistance, which did not reflect selective pressures by antibiotics most commonly used in pig therapy-tetracyclines and beta-lactams. Contrary to ARGs, greater number of virulence resistance genes were detected after evisceration in some products such as kidney, which reflected the poor hygienic practices. More than 19 general virulence features-mainly adherence, secretion system, chemotaxis and motility, invasion and motility were detected in some products. However, immune evasion determinants were detected in almost all samples analyzed from the beginning of the process, with highest amounts found from the anesthesia area. We conclude that there are two main sources of contamination in a pig slaughterhouse: the microorganisms carried on the animals' hide, and those from the evisceration step. As such, focussing control measures, e.g., enhanced disinfection procedures, on these contamination-source areas may reduce risks to food safety and consumer health, since the antibiotic and virulence determinants may spread to end products and the environment; further, ARG and virulence traits can exacerbate pathogen treatments. | 2018 | 30258416 |
| 7405 | 5 | 0.9998 | Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Soil is one of the biggest reservoirs of microbial diversity, yet the processes that define the community dynamics are not fully understood. Apart from soil management being vital for agricultural purposes, it is also considered a favorable environment for the evolution and development of antimicrobial resistance, which is due to its high complexity and ongoing competition between the microorganisms. Different approaches to agricultural production might have specific outcomes for soil microbial community composition and antibiotic resistance phenotype. Therefore in this study we aimed to compare the soil microbiota and its resistome in conventional and organic farming systems that are continually influenced by the different treatment (inorganic fertilizers and pesticides vs. organic manure and no chemical pest management). The comparison of the soil microbial communities revealed no major differences among the main phyla of bacteria between the two farming styles with similar soil structure and pH. Only small differences between the lower taxa could be observed indicating that the soil community is stable, with minor shifts in composition being able to handle the different styles of treatment and fertilization. It is still unclear what level of intensity can change microbial composition but current conventional farming in Central Europe demonstrates acceptable level of intensity for soil bacterial communities. When the resistome of the soils was assessed by screening the total soil DNA for clinically relevant and soil-derived antibiotic resistance genes, a low variety of resistance determinants was detected (resistance to β-lactams, aminoglycosides, tetracycline, erythromycin, and rifampicin) with no clear preference for the soil farming type. The same soil samples were also used to isolate antibiotic resistant cultivable bacteria, which were predominated by highly resistant isolates of Pseudomonas, Stenotrophomonas, Sphingobacterium and Chryseobacterium genera. The resistance of these isolates was largely dependent on the efflux mechanisms, the soil Pseudomonas spp. relying mostly on RND, while Stenotrophomonas spp. and Chryseobacterium spp. on RND and ABC transporters. | 2019 | 31105678 |
| 6595 | 6 | 0.9998 | Methodological aspects of investigating the resistome in pig farm environments. A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, and the environment attracts significant research attention. The animal sector is one of the major contributors to the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions about the epidemiology of AMR in farm environments remain unanswered. This is connected to several methodological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible research on the resistome in complex samples from the indoor farm environment. The work included optimizing sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching against multiple ARG databases is essential for detecting the highest diversity of ARGs. | 2025 | 39954816 |
| 6597 | 7 | 0.9998 | Exploiting a targeted resistome sequencing approach in assessing antimicrobial resistance in retail foods. BACKGROUND: With the escalating risk of antimicrobial resistance (AMR), there are limited analytical options available that can comprehensively assess the burden of AMR carried by clinical/environmental samples. Food can be a potential source of AMR bacteria for humans, but its significance in driving the clinical spread of AMR remains unclear, largely due to the lack of holistic-yet-sensitive tools for surveillance and evaluation. Metagenomics is a culture-independent approach well suited for uncovering genetic determinants of defined microbial traits, such as AMR, present within unknown bacterial communities. Despite its popularity, the conventional approach of non-selectively sequencing a sample's metagenome (namely, shotgun-metagenomics) has several technical drawbacks that lead to uncertainty about its effectiveness for AMR assessment; for instance, the low discovery rate of resistance-associated genes due to their naturally small genomic footprint within the vast metagenome. Here, we describe the development of a targeted resistome sequencing method and demonstrate its application in the characterization of the AMR gene profile of bacteria associated with several retail foods. RESULT: A targeted-metagenomic sequencing workflow using a customized bait-capture system targeting over 4,000 referenced AMR genes and 263 plasmid replicon sequences was validated against both mock and sample-derived bacterial community preparations. Compared to shotgun-metagenomics, the targeted method consistently provided for improved recovery of resistance gene targets with a much-improved target detection efficiency (> 300-fold). Targeted resistome analyses conducted on 36 retail-acquired food samples (fresh sprouts, n = 10; ground meat, n = 26) and their corresponding bacterial enrichment cultures (n = 36) reveals in-depth features regarding the identity and diversity of AMR genes, most of which were otherwise undetected by the whole-metagenome shotgun sequencing method. Furthermore, our findings suggest that foodborne Gammaproteobacteria could be the major reservoir of food-associated AMR genetic determinants, and that the resistome structure of the selected high-risk food commodities are, to a large extent, dictated by microbiome composition. CONCLUSIONS: For metagenomic sequencing-based surveillance of AMR, the target-capture method presented herein represents a more sensitive and efficient approach to evaluate the resistome profile of complex food or environmental samples. This study also further implicates retail foods as carriers of diverse resistance-conferring genes indicating a potential impact on the dissemination of AMR. | 2023 | 36991496 |
| 3234 | 8 | 0.9998 | Global profiling of antibiotic resistomes in maize rhizospheres. The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern. In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherlands, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop field. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotic-treated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility since mobile genetic elements were rarely found in their flanking regions. Notably, a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices. | 2023 | 36781495 |
| 3460 | 9 | 0.9998 | Bioprospecting for β-lactam resistance genes using a metagenomics-guided strategy. Emergence of new antibiotic resistance bacteria poses a serious threat to human health, which is largely attributed to the evolution and spread of antibiotic resistance genes (ARGs). In this work, a metagenomics-guided strategy consisting of metagenomic analysis and function validation was proposed for rapidly identifying novel ARGs from hot spots of ARG dissemination, such as wastewater treatment plants (WWTPs) and animal feces. We used an antibiotic resistance gene database to annotate 76 putative β-lactam resistance genes from the metagenomes of sludge and chicken feces. Among these 76 candidate genes, 25 target genes that shared 40~70% amino acid identity to known β-lactamases were cloned by PCR from the metagenomes. Their resistances to four β-lactam antibiotics were further demonstrated. Furthermore, the validated ARGs were used as the reference sequences to identify novel ARGs in eight environmental samples, suggesting the necessity of re-examining the profiles of ARGs in environmental samples using the validated novel ARG sequences. This metagenomics-guided pipeline does not rely on the activity of ARGs during the initial screening process and may specifically select novel ARG sequences for function validation, which make it suitable for the high-throughput screening of novel ARGs from environmental metagenomes. | 2017 | 28584911 |
| 7323 | 10 | 0.9997 | Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Aquatic ecosystems have been increasingly threatened by anthropogenic activities, e.g., wastewater discharge and farm operation. Several methods are adopted to evaluate the effects of anthropogenic activities on biological risk in the environment, such as qPCR and amplicon next-generation sequencing. However, these methods fall short of providing genomic information of target species, which is vital for risk assessment from genomic aspect. Here, we developed a novel approach integrating metagenomic analysis and flow cytometry to identify and quantify potential pathogenic antibiotic resistant bacteria (PARB; carrying both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs)) in the environment, which are of particular concern due to their infection ability and antibiotic resistance. Based on the abundance/density of PARB, we evaluated microbiological risk in a river impacted by both municipal drainage and agriculture runoff. We collected samples upstream (mountainous area) as the control. Results showed that 81.8% of dominant PARB (33) recovered using our approach were related to known pathogenic taxa. In addition, intragenomic ARGs-VFGs coexistence patterns in the dominant Pseudomonas genomes (20 out of 71 PARB) showed high similarity with the most closely related Pseudomonas genomes from the NCBI RefSeq database. These results reflect acceptable reliability of the approach for (potential) pathogen identification in environmental samples. According to the PARB density, microbiological risk in samples from the agricultural area was significantly higher than in samples from the urban area. We speculated that this was due to the higher antibiotic usage in agriculture as well as intragenomic ARGs-VFGs co-evolution under antibiotic selective pressure. This study provides an alternative approach for the identification and quantification of PARB in aquatic environments, which can be applied for microbiological risk assessment. | 2020 | 31614233 |
| 3461 | 11 | 0.9997 | Metagenomics insights into bacterial diversity and antibiotic resistome of the sewage in the city of Belém, Pará, Brazil. INTRODUCTION: The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics. METHODS: One liter of surface water was collected at four points of a sewage channel, and after filtration, the total DNA was extracted and then sequenced on an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and the microbiome was predicted using the Kraken software, while the resistome was analyzed on the CARD webserver. All ecological and statistical analyses were performed using the. RStudio tool. RESULTS AND DISCUSSION: The complete metagenome results showed a community with high diversity at the beginning and more restricted diversity at the end of the sampling, with a predominance of the phyla Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered pathogenic, with an emphasis on those belonging to the Enterobacteriaceae family. It was possible to identify bacterial groups of different threat levels to human health according to a report by the U.S. Centers for Disease Control and Prevention. The resistome analysis predominantly revealed genes that confer resistance to multiple drugs, followed by aminoglycosides and macrolides, with efflux pumps and drug inactivation being the most prevalent resistance mechanisms. This work was pioneering in characterizing resistance in a sanitary environment in the Amazon region and reinforces that sanitation measures for urban sewage are necessary to prevent the advancement of antibiotic resistance and the contamination of water resources, as evidenced by the process of eutrophication. | 2024 | 39629213 |
| 7718 | 12 | 0.9997 | Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. With the presence of 36 phyla, 326 families and 985 genera, the fish gut microbiota was found to be quite diverse in nature. However, at the phylum level, more than three-fourths of gut microbes belonged to Proteobacteria. Very low prevalence of commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) in fish gut suggested the need to search for alternative probiotics for aquaculture use. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy metabolism (4%) and fermentation (2%). In conformity with herbivorous feeding habit of L. rohita, gut microbiome also had pathways for the degradation of cellulose, hemicellulose, chitin, pectin, starch, and other complex carbohydrates. High prevalence of Actinobacteria and antibiotic biosynthesis pathways in the fish gut microbiome indicated its potential for bioprospecting of potentially novel natural antibiotics. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment. The role of ARGs in fish gut microbiome needs further investigations. | 2019 | 30604012 |
| 3232 | 13 | 0.9997 | Metagenome-Based Analysis of the Microbial Community Structure and Drug-Resistance Characteristics of Livestock Feces in Anhui Province, China. We analyzed metagenome data of feces from sows at different physiological periods reared on large-scale farms in Anhui Province, China, to provide a better understanding of the microbial diversity of the sow intestinal microbiome and the structure of antibiotic-resistance genes (ARGs) and virulence genes it carries. Species annotation of the metagenome showed that in the porcine intestinal microbiome, bacteria were dominant, representing >97% of the microorganisms at each physiological period. Firmicutes and Proteobacteria dominated the bacterial community. In the porcine gut microbiome, the viral component accounted for an average of 0.65%, and the species annotation results indicated that most viruses were phages. In addition, we analyzed the microbiome for ARGs and virulence genes. Multidrug-like, MLS-like, and tetracycline-like ARGs were most abundant in all samples. Evaluation of the resistance mechanisms indicated that antibiotic inactivation was the main mechanism of action in the samples. It is noteworthy that there was a significant positive correlation between ARGs and the total microbiome. Moreover, comparative analysis with the Virulence Factor Database showed that adhesion virulence factors were most abundant. | 2024 | 38393105 |
| 7325 | 14 | 0.9997 | Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks. | 2024 | 39500921 |
| 3235 | 15 | 0.9997 | Vertical distribution of antibiotic resistance genes in an urban green facade. The phyllosphere is considered a key site for the transfer of both naturally and anthropogenically selected antimicrobial resistance genes (ARGs) to humans. Consequently, the development of green building systems may pose an, as yet, unexplored pathway for ARGs and pathogens to transfer from the environment to outdoor plants. We collected leaves from plants climbing up buildings at 1, 2, 4 and 15 m above ground level and collected associated dust samples from adjacent windowsills to determine the diversity and relative abundance of microbiota and ARGs. Overall, a total of 143 ARGs from 11 major classes and 18 mobile genetic elements (MGEs) were detected. The relative abundance of ARGs within the phyllosphere decreased with increasing height above ground level. Fast expectation-maximization microbial source tracking (FEAST) suggested that the contribution of soil and aerosols to the phyllosphere microbiome was limited. A culture-dependent method to isolate bacteria from plant tissues identified a total of 91 genera from root, stem, and leaf samples as well as endophytes isolated from leaves. Of those bacteria, 20 isolates representing 9 genera were known human pathogenic members to humans. Shared bacterial from culture-dependent and culture-independent methods suggest microorganisms may move from soil to plant, potentially through an endophytic mechanism and thus, there is a clear potential for movement of ARGs and human pathogens from the outdoor environment. | 2021 | 33721724 |
| 3253 | 16 | 0.9997 | Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species. | 2023 | 36760505 |
| 7384 | 17 | 0.9997 | Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing. | 2022 | 35306061 |
| 3241 | 18 | 0.9997 | Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Anthropogenic environments have been implicated in enrichment and exchange of antibiotic resistance genes and bacteria. Here we study the impact of confined and controlled swine farm environments on temporal changes in the gut microbiome and resistome of veterinary students with occupational exposure for 3 months. By analyzing 16S rRNA and whole metagenome shotgun sequencing data in tandem with culture-based methods, we show that farm exposure shapes the gut microbiome of students, resulting in enrichment of potentially pathogenic taxa and antimicrobial resistance genes. Comparison of students' gut microbiomes and resistomes to farm workers' and environmental samples revealed extensive sharing of resistance genes and bacteria following exposure and after three months of their visit. Notably, antibiotic resistance genes were found in similar genetic contexts in student samples and farm environmental samples. Dynamic Bayesian network modeling predicted that the observed changes partially reverse over a 4-6 month period. Our results indicate that acute changes in a human's living environment can persistently shape their gut microbiota and antibiotic resistome. | 2020 | 32188862 |
| 7727 | 19 | 0.9997 | Psychrotrophic Bacteria Equipped with Virulence and Colonization Traits Populate the Ice Cream Manufacturing Environment. Several microbial taxa have been associated with food processing facilities, and they might resist by attaching on tools and equipment even after sanitation procedures, producing biofilms that adhere to the surfaces and might embed other microorganisms, including spoilers and pathogens. There is increasing evidence that these communities can be transferred to the final product. To explore the microbial contamination routes in a facility producing ice creams, we collected foods and environmental swabs from industrial surfaces of equipment and tools and performed taxonomic and functional analyses of the microbial DNA extracted from the environmental samples. Our results suggest that complex communities dominated by psychrotrophic bacteria (e.g., Pseudomonas and Acinetobacter spp.) inhabit the food processing environment, and we demonstrate that these communities might be transferred from the surfaces to the products. Functional analysis performed on environmental samples highlighted the presence of several genes linked to antimicrobial resistance and adherence on abiotic surfaces; such genes were more abundant on food contact (FC) than on other surfaces. Metagenome-assembled genomes (MAGs) of Pseudomonas stutzeri showed genes linked with biofilm formation and motility, which are surely linked to colonizing capabilities in the processing lines. The study highlights clear potential advantages of applying microbiome mapping in the food industry for source tracking of microbial contamination and for planning appropriate ad hoc sanitization strategies. IMPORTANCE Several microbial species might permanently establish in food processing facilities, thus contributing to food loss. In fact, food contact surfaces might transfer microorganisms to intermediates and products, potentially representing a hazard to human health. In this work, we provide evidence of the existence of complex microbial communities overcoming sanitation in an ice cream-producing facility. These communities harbored several genes that could potentially lead to attachment to surfaces and antimicrobial resistance. Also, prediction of routes of contamination showed that several potential spoilage taxa might end up in the final product. Importantly, in this work, we show that mapping the environmental microbiome is a high-resolution technique that might help food business operators ensure food quality and safety through detection of potentially hazardous microorganisms. | 2023 | 37432121 |