Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
314901.0000Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. Introduction: To consider the growing health issues caused by antibiotic resistance from a "one health" perspective, the contribution of meat production needs to be addressed. While antibiotic resistance is naturally present in microbial communities, the treatment of farm animals with antibiotics causes an increase in antibiotic resistance genes (ARG) in the gut microbiome. Pigs are among the most prevalent animals in agriculture; therefore, reducing the prevalence of antibiotic-resistant bacteria in the pig gut microbiome could reduce the spread of antibiotic resistance. Probiotics are often studied as a way to modulate the microbiome and are, therefore, an interesting way to potentially decrease antibiotic resistance. Methods: To assess the efficacy of a probiotic to reduce the prevalence of ARGs in the pig microbiome, six pigs received either treatment with antibiotics (tylvalosin), probiotics (Pediococcus acidilactici MA18/5M; Biopower(®) PA), or a combination of both. Their faeces and ileal digesta were collected and DNA was extracted for whole genome shotgun sequencing. The reads were compared with taxonomy and ARG databases to identify the taxa and resistance genes in the samples. Results: The results showed that the ARG profiles in the faeces of the antibiotic and combination treatments were similar, and both were different from the profiles of the probiotic treatment (p < 0.05). The effects of the treatments were different in the digesta and faeces. Many macrolide resistance genes were detected in a higher proportion in the microbiome of the pigs treated with antibiotics or the combination of probiotics and antibiotics. Resistance-carrying conjugative plasmids and horizontal transfer genes were also amplified in faeces samples for the antibiotic and combined treatments. There was no effect of treatment on the short chain fatty acid content in the digesta or the faeces. Conclusion: There is no positive effect of adding probiotics to an antibiotic treatment when these treatments are administered simultaneously.202438606356
314810.9999Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.202337093913
314520.9999Preventive antibiotic treatment of calves: emergence of dysbiosis causing propagation of obese state-associated and mobile multidrug resistance-carrying bacteria. In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S-rDNA) established that at day 7, antibiotic-treated microbiota showed a 10-fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid-encoded quinolone, oqxB and propagation of mcr-2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease- and obese-related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans.202031663669
740830.9998Effects of Dietary Antimicrobial Growth Promoters on Performance Parameters and Abundance and Diversity of Broiler Chicken Gut Microbiome and Selection of Antibiotic Resistance Genes. Antimicrobial growth promoters (AGPs) are commonly used in broiler production. There is a huge societal concern around their use and their contribution to the proliferation of antimicrobial resistance (AMR) in food-producing animals and dissemination to humans or the environment. However, there is a paucity of comprehensive experimental data on their impact on poultry production and the AMR resistome. Here, we investigated the effect of five antimicrobial growth promoters (virginiamycin, chlortetracycline, bacitracin methyl disalicylate, lincomycin, and tylosin) used in the commercial broiler production in the Indian subcontinent and in the different parts of the world for three consecutive production cycles on performance variables and also the impact on gut bacteria, bacteriophage, and resistome profile using culture-independent approaches. There was no significant effect of AGPs on the cumulative growth or feed efficiency parameters at the end of the production cycles and cumulative mortality rates were also similar across groups. Many antibiotic resistance genes (ARGs) were ubiquitous in the chicken gut irrespective of AGP supplementation. In total, 62 ARGs from 15 antimicrobial classes were detected. Supplementation of AGPs influenced the selection of several classes of ARGs; however, this was not correlated necessarily with genes relevant to the AGP drug class; some AGPs favored the selection of ARGs related to antimicrobials not structurally related to the AGP. AGPs did not impact the gut bacterial community structure, including alpha or beta diversity significantly, with only 16-20 operational taxonomic units (OTUs) of bacteria being altered significantly. However, several AGPs significantly reduced the population density of some of the potential pathogenic genera of bacteria, such as Escherichia coli. Chlortetracycline increased the abundance of Escherichia phage, whereas other AGPs did not influence the abundance of bacteriophage significantly. Considering the evidence that AGPs used in poultry production can select for resistance to more than one class of antimicrobial resistance, and the fact that their effect on performance is not significant, their use needs to be reduced and there is a need to monitor the spread of ARGs in broiler chicken farms.202235783415
315140.9998Changes of antibiotic resistance genes and gut microbiota after the ingestion of goat milk. Antibiotic resistance genes, as newly emerging contaminants, have become a serious challenge to public health through the food chain. The gut of humans and animals is an important reservoir for the development and dissemination of antibiotic resistance genes because of the great abundance and diversity of intestinal microbiota. In the present study, we evaluated the influence of goat milk on the diversity and abundance of antibiotic resistance genes and gut microbial communities, especially pathogenic bacteria. Male mice were used, 12 for each of the 2 groups: a control group that received sterile distilled water and a treated group that received goat milk, and gut microbiota and antibiotic resistance genes were compared in these groups using metagenomic analysis. The results revealed that ingestion of goat milk decreased the diversity and abundance of antibiotic resistance genes in the mice gut. The relative abundance of fluoroquinolone, peptide, macrolide, and β-lactam resistance genes in the total microbial genes significantly decreased after the intervention. Goat milk intake also significantly reduced the abundance of pathogenic bacteria, such as Clostridium bolteae, Clostridium symbiosum, Helicobacter cinaedi, and Helicobacter bilis. Therefore, goat milk intake might decrease the transfer potential of antibiotic resistance gene to pathogenic bacteria in the gut. In addition, bacteria with multiple resistance mechanisms accounted for approximately 4.5% of total microbial communities in the control group, whereas it was not detectable in the goat milk group, indicating the total inhibition by goat milk intake. This study highlights the influence of goat milk on antibiotic resistome and microbial communities in the gut, and provides a new insight into the function of goat milk for further study.202235346469
740250.9998Variability of the Ability of Complex Microbial Communities to Exclude Microbes Carrying Antibiotic Resistance Genes in Rabbits. Reducing antibiotic use is a necessary step toward less antibiotic resistance in livestock, but many antibiotic resistance genes can persist for years, even in an antibiotic-free environment. In this study, we investigated the potential of three fecal complex microbial communities from antibiotic-naive does to drive the microbiota of kits from antibiotic-exposed dams and outcompete bacteria-carrying antibiotic-resistant genes. The fecal complex microbial communities were either orally delivered or simply added as fresh fecal pellets in four to five nests that were kept clean from maternal feces. Additionally, four nests were cleaned for the maternal feces and five nests were handled according to the common farm practice (i.e., cleaning once a week) as controls. At weaning, we measured the relative abundance of 26 antibiotic resistance genes, the proportion of Enterobacteriaceae resistant to tetracycline and sulfonamide antibiotics, and the taxonomic composition of the microbiota by sequencing the 16S rRNA genes of one kit per nest. Changing the surrounding microbes of the kits can hinder the transmission of antibiotic resistance genes from one generation to the next, but the three communities widely differed in their ability to orient gut microbes and in their impact on antibiotic resistance genes. The most efficient delivery of the microbial community reduced the proportion of resistant Enterobacteria from 93 to 9%, decreased the relative abundance of eight antibiotic resistance genes, and changed the gut microbes of the kits at weaning. The least efficient did not reduce any ARG or modify the bacterial community. In addition, adding fecal pellets was more efficient than the oral inoculation of the anaerobic suspension derived from these fecal pellets. However, we were unable to predict the outcome of the exclusion from the data of the donor does (species composition and abundance of antibiotic resistance genes). In conclusion, we revealed major differences between microbial communities regarding their ability to exclude antibiotic resistance genes, but more work is needed to understand the components leading to the successful exclusion of antibiotic resistance genes from the gut. As a consequence, studies about the impact of competitive exclusion should use several microbial communities in order to draw general conclusions.201931333614
740360.9998Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Enrofloxacin is an important antibiotic for the treatment of Salmonella infections in livestock and poultry. However, the effects of different concentrations of enrofloxacin on the bacterial and metabolite compositions of the chicken gut and changes in the abundance of resistance genes in cecum contents remain unclear. To investigate the effects of enrofloxacin on chickens, we orally administered different concentrations of enrofloxacin to 1-day-old chickens and performed 16S rRNA gene sequencing to assess changes in the gut microbiomes of chickens after treatment. The abundance of fluoroquinolone (FQ) resistance genes was measured using quantitative PCR. Metabolomics techniques were used to examine the cecal metabolite composition. We found that different concentrations of enrofloxacin had different effects on cecum microorganisms, with the greatest effect on cecum microbial diversity in the low-concentration enrofloxacin group at day 7. Enrofloxacin use reduced the abundance of beneficial bacteria such as Lactobacillaceae and Oscillospira. Furthermore, cecum microbial diversity was gradually restored as the chickens grew. In addition, enrofloxacin increased the abundance of resistance genes, and there were differences in the changes in abundance among different antibiotic resistance genes. Moreover, enrofloxacin significantly affected linoleic acid metabolism, amino acid metabolism, and signaling pathways. This study helps improve our understanding of how antibiotics affect host physiological activities and provides new insights into the rational use of drugs in poultry farming. The probiotics and metabolites that we identified could be used to modulate the negative effects of antibiotics on the host, which requires further study. IMPORTANCE In this study, we investigated changes in the cecum flora, metabolites, and abundances of fluoroquinolone antibiotic resistance genes in chickens following the use of different concentrations of enrofloxacin. These results were used to determine the effects of enrofloxacin on chick physiology and the important flora and metabolites that might contribute to these effects. In addition, these results could help in assessing the effect of enrofloxacin concentrations on host metabolism. Our findings could help guide the rational use of antibiotics and mitigate the negative effects of antibiotics on the host.202336840593
392570.9998Evaluating the health risk of probiotic supplements from the perspective of antimicrobial resistance. Antimicrobial resistance remains a public health threat. Probiotics harboring antimicrobial resistant genes (ARGs) have, in recent years, been considered a potential health risk. Studies conducted on probiotics from increasingly popular health supplements have raised the possibility of transmitting ARGs to commensals in the human gut, concomitantly establishing a reservoir of ARGs and risking acquisition by opportunistic pathogens. Building on our previous study that reported multiple antibiotic resistance in probiotics of health supplements, in this research, we have attempted to detect their ARGs that may account for resistant phenotypes. ARGs responsible for tetracycline, macrolide, aminoglycoside, and glycopeptide resistance were prevalent in probiotics. Through laboratory adaptive evolution studies, we also show that streptomycin-adapted probiotics gained resistance to erythromycin, tetracycline, and doxycycline more effectively than non-adapted ones. When co-incubated with Enterococcus faecalis, Escherichia coli, or Staphylococcus aureus on Caco-2 and/or HCT-116 cells, streptomycin resistance was transferred from the adapted probiotics to generate transconjugants at frequencies comparable to or higher than that of other studies conducted through filter mating. Consistently, ARGs conferring resistance to streptomycin (aadA) and erythromycin [erm(B)-1] were detected in E. coli and S. aureus transconjugants, respectively, after co-incubation with streptomycin-adapted probiotics on Caco-2 cells. aadA and erm(B)-1 were both detected in E. faecalis transconjugant after the same co-incubation on HCT-116 cells. Our data and future comparative genomics and metagenomics studies conducted on animal models and in healthy, immunocompromised, and/or antibiotic-treated human cohorts will contribute to a more comprehensive understanding of probiotic consumption, application, and safety. IMPORTANCE: Probiotics are becoming increasingly popular, with promising applications in food and medicine, but the risk of transferring ARGs to disease-causing bacteria has raised concerns. Our study detected ARGs in probiotics of health supplements conferring resistance to tetracycline, macrolide, aminoglycoside, and glycopeptide drugs. Streptomycin-adapted probiotics also gained resistance to other antibiotics more effectively than non-adapted ones. Importantly, we showed that streptomycin resistance could be transferred to other bacteria after co-incubation with probiotics on human intestinal cells. ARGs responsible for erythromycin and streptomycin resistance, which were initially absent in the recipient bacteria, were also detected in the transconjugants. Our data build the foundation for future studies that will be conducted on animal models and in humans and leveraging advanced metagenomics approaches to clarify the long-term health risk of probiotic consumption.202539655960
332580.9998Long-term beneficial effect of faecal microbiota transplantation on colonisation of multidrug-resistant bacteria and resistome abundance in patients with recurrent Clostridioides difficile infection. BACKGROUND: Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS: We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS: Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS: Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.202438419010
385190.9998Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. BACKGROUND: Drug-resistant fish pathogens can cause significant economic loss to fish farmers. Since 2012, florfenicol has become an approved drug for treating both septicemia and columnaris diseases in freshwater fish. Due to the limited drug options available for aquaculture, the impact of the therapeutical florfenicol treatment on the microbiota landscape as well as the resistome present in the aquaculture farm environment needs to be evaluated. RESULTS: Time-series metagenomic analyses were conducted to the aquatic microbiota present in the tank-based catfish production systems, in which catfish received standard therapeutic 10-day florfenicol treatment following the federal veterinary regulations. Results showed that the florfenicol treatment shifted the structure of the microbiota and reduced the biodiversity of it by acting as a strong stressor. Planctomycetes, Chloroflexi, and 13 other phyla were susceptible to the florfenicol treatment and their abundance was inhibited by the treatment. In contrast, the abundance of several bacteria belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia phyla increased. These bacteria with increased abundance either harbor florfenicol-resistant genes (FRGs) or had beneficial mutations. The florfenicol treatment promoted the proliferation of florfenicol-resistant genes. The copy number of phenicol-specific resistance genes as well as multiple classes of antibiotic-resistant genes (ARGs) exhibited strong correlations across different genetic exchange communities (p < 0.05), indicating the horizontal transfer of florfenicol-resistant genes among these bacterial species or genera. Florfenicol treatment also induced mutation-driven resistance. Significant changes in single-nucleotide polymorphism (SNP) allele frequencies were observed in membrane transporters, genes involved in recombination, and in genes with primary functions of a resistance phenotype. CONCLUSIONS: The therapeutical level of florfenicol treatment significantly altered the microbiome and resistome present in catfish tanks. Both intra-population and inter-population horizontal ARG transfer was observed, with the intra-population transfer being more common. The oxazolidinone/phenicol-resistant gene optrA was the most prevalent transferred ARG. In addition to horizontal gene transfer, bacteria could also acquire florfenicol resistance by regulating the innate efflux systems via mutations. The observations made by this study are of great importance for guiding the strategic use of florfenicol, thus preventing the formation, persistence, and spreading of florfenicol-resistant bacteria and resistance genes in aquaculture.201931818316
3935100.9998Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. The use of antimicrobials in the food animal industry has caused an increased prevalence of antimicrobial-resistant bacteria and antimicrobial resistance genes, which can be transferred to the microbiota of humans through the food chain or the environment. To reduce the development and spread of antimicrobial resistance, restrictions on antimicrobial use in food animals have been implemented in different countries. We investigated the impact of an antimicrobial restriction intervention during two generations of pigs. Fecal samples were collected in five growth phases. The frequency of antimicrobial-resistant coliforms and antimicrobial-resistant bacteria or antimicrobial resistance genes was analyzed. No differences in the richness or abundance of antimicrobial-resistant coliforms or antimicrobial resistance genes were found when animals fed with or without prophylactic antimicrobials were compared. Withholding antimicrobial supplementation did not negatively affect weight gain in pigs. Withdrawal of prophylactic antimicrobial consumption during two generations of pigs was not enough to reduce the prevalence of antimicrobial resistance genes, as measured by richness and abundance markers. This study indicates that the fitness costs associated with bacterial carriage of some antimicrobial resistance genes are low.202134872396
7409110.9998Longitudinal screening of antibiotic residues, antibiotic resistance genes and zoonotic bacteria in soils fertilized with pig manure. Fertilization with animal manure is one of the main routes responsible for the introduction of antibiotic residues, antibiotic resistance genes, and zoonotic bacteria into the environment. The aim of this study was to assess the effect of the use of pig (swine) manure as a fertilizer on the presence and fate of six antibiotic residues, nine antibiotic resistance genes, and bacteria (zoonotic bacteria Salmonella spp. and Campylobacter spp. and E. coli as indicator for Gram-negative bacterial species of the microbiota of livestock) on five fields. To the best of our knowledge, the present study is the first to assess a multitude of antibiotic residues and resistance to several classes of antibiotics in pig manure and in fertilized soil over time in a region with an intensive pig industry (Flanders, Belgium). The fields were sampled at five consecutive time points, starting before fertilization up to harvest. Low concentrations of antibiotic residues could be observed in the soils until harvest. The antibiotic resistance genes studied were already present at background levels in the soil environment prior to fertilization, but after fertilization with pig manure, an increase in relative abundance was observed for most of them, followed by a decline back to background levels by harvest-time on all of the fields studied. No apparent differences regarding the presence of antibiotic resistance genes in soils were observed between those fertilized with manure that either contained antibiotic residues or not. With regard to dissemination of resistance, the results presented in this study confirm that fertilization with animal manure directly adds resistance genes to the soil. In addition, it shows that this direct mechanism may be more important than possible selective pressure in soil-dwelling bacteria exerted by antibiotic residues present in the manure. These results also indicate that zoonotic bacteria detected in the manure could be detected in the soil environment directly after fertilization, but not after 1 month. In conclusion, although some antibiotic residues may be present in both manure and soil at concentrations to exert selective pressure, it seems that antibiotic resistance is mostly introduced directly to soil through fertilization with animal manure.202032410188
3255120.9998Early life dynamics of ARG and MGE associated with intestinal virome in neonatal piglets. The pre- and post-weaning stages for piglets are critical periods for the maturation of intestinal functions and contamination with antibiotic resistant bacterial pathogens will threaten their intestinal health. The presence of bacteriophage can also alter bacterial populations in the intestine but whether transmission of antibiotic resistance genes (ARG) is affected by phage during maturation of the neonatal piglet intestine is not known. We therefore identified the intestinal virome along with ARGs and mobile genetic elements (MGE) from piglet fecal samples collected from 3 to 28 days representing the different growth stages. We found wide fluctuations for the intestinal virome of weaning piglets and most virus - related antibiotic resistance was derived from temperate phage suggesting a reservoir of multidrug resistance was present in the neonatal porcine gut. Our results provide a comprehensive understanding of ARGs associated with the intestinal virome that therefore represents a potential risk for horizontal ARG transfer to pathogenic bacteria.202236191572
3853130.9998Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. The increased acquisition of antibiotic resistance by pathogens is a global health concern. The environmental selection of antibiotic resistance can be caused by either antibiotic residues or co-selecting agents such as toxic metal(loid)s. This study explored the potential role of As(III) as a co-selecting driver in the spread of antibiotic resistance in paddy soils. By applying high-throughput sequencing, we found that the diversity and composition of soil microbial communities was significantly altered by As(III) exposure, resulting in an increased proportion of potential pathogens (9.9%) compared to the control soil (0.1%). Meanwhile, a total of 46 As(III)-resistant isolates were obtained from As(III)-exposure soil, among which potential pathogens accounted for 54.3%. These As(III)-resistant bacteria showed a high incidence of resistance to sulfanilamide (100%) and streptomycin (88-93%). The association between antibiotic and As(III) resistances was further investigated in a potentially pathogenic isolate by whole-genome sequencing and a transcription assay. The results showed that As(III) and antibiotic resistance genes might co-occur in a mobile genomic island and be co-regulated by As(III), implying that antibiotic resistance could be co-selected by As(III) via co-resistance and co-regulation mechanisms. Overall, these results suggest that As(III) exposure provides a strong selective pressure for the expansion of soil bacterial resistome.202032302839
4581140.9998Development of aminoglycoside and β-lactamase resistance among intestinal microbiota of swine treated with lincomycin, chlortetracycline, and amoxicillin. Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0) were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant zoonotic pathogens.201425408688
4654150.9998Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. Several studies have recently identified the main factors contributing to the bacterial colonization of newborns and the dynamics of the infant microbiome development. However, most of these studies address large time periods of weeks or months after birth, thereby missing on important aspects of the early microbiome maturation, such as the acquisition of antibiotic resistance determinants during postpartum hospitalization. The pioneer bacterial colonization and the extent of its associated antibiotic resistance gene (ARG) dissemination during this early phase of life are largely unknown. Studies addressing resistant bacteria or ARGs in neonates often focus only on the presence of particular bacteria or genes from a specific group of antibiotics. In the present study, we investigated the gut-, the oral-, and the skin-microbiota of neonates within the first 72 h after birth using 16S rDNA sequencing approaches. In addition, we screened the neonates and their mothers for the presence of 20 different ARGs by directed TaqMan qPCR assays. The taxonomic analysis of the newborn samples revealed an important shift of the microbiota during the first 72 h after birth, showing a clear site-specific colonization pattern in this very early time frame. Moreover, we report a substantial acquisition of ARGs during postpartum hospitalization, with a very high incidence of macrolide resistance determinants and mecA detection across different body sites of the newborns. This study highlights the importance of antibiotic resistance determinant dissemination in neonates during hospitalization, and the need to investigate the implication of the mothers and the hospital environment as potential sources of ARGs.202032754449
7384160.9998Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.202235306061
7410170.9998The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. The use of antibiotics at subtherapeutic concentrations for agricultural applications is believed to be an important factor in the proliferation of antibiotic-resistant bacteria. The goal of this study was to determine if the application of manure onto agricultural land would result in the proliferation of antibiotic resistance among soil bacteria. Chlortetracycline-resistant bacteria were enumerated and characterized from soils exposed to the manure of animals fed subtherapeutic concentrations of antibiotics and compared to the chlortetracycline-resistant bacteria from soils at farms with restricted antibiotic use (dairy farms) and from non-agricultural soils. No significant differences were observed at nine different study sites with respect to the numbers and types of cultivated chlortetracycline-resistant bacteria. Genes encoding for tetracycline resistance were rarely detected in the resistant bacteria from these sites. In contrast, soils collected from a tenth farm, which allowed manure to indiscriminately accumulate outside the animal pen, had significantly higher chlortetracycline-resistance levels. These resistant bacteria frequently harbored one of 14 different genes encoding for tetracycline resistance, many of which (especially tet(A) and tet(L)) were detected in numerous different bacterial species. Subsequent bacterial enumerations at this site, following the cessation of farming activity, suggested that this farm remained a hotspot for antibiotic resistance. In conclusion, we speculate that excessive application of animal manure leads to the spread of resistance to soil bacteria (potentially by lateral gene transfer), which then serve as persistent reservoir of antibiotic resistance.200718043630
3681180.9998A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
7107190.9998A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.202236009027