# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3113 | 0 | 1.0000 | Resistome in the indoor dust samples from workplaces and households: a pilot study. The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals. | 2024 | 39691696 |
| 3277 | 1 | 0.9998 | Airborne antibiotic resistome and human health risk in railway stations during COVID-19 pandemic. Antimicrobial resistance is recognized as one of the greatest public health concerns. It is becoming an increasingly threat during the COVID-19 pandemic due to increasing usage of antimicrobials, such as antibiotics and disinfectants, in healthcare facilities or public spaces. To explore the characteristics of airborne antibiotic resistome in public transport systems, we assessed distribution and health risks of airborne antibiotic resistome and microbiome in railway stations before and after the pandemic outbreak by culture-independent and culture-dependent metagenomic analysis. Results showed that the diversity of airborne antibiotic resistance genes (ARGs) decreased following the pandemic, while the relative abundance of core ARGs increased. A total of 159 horizontally acquired ARGs, predominantly confering resistance to macrolides and aminoglycosides, were identified in the airborne bacteria and dust samples. Meanwhile, the abundance of horizontally acquired ARGs hosted by pathogens increased during the pandemic. A bloom of clinically important antibiotic (tigecycline and meropenem) resistant bacteria was found following the pandemic outbreak. 251 high-quality metagenome-assembled genomes (MAGs) were recovered from 27 metagenomes, and 86 genera and 125 species were classified. Relative abundance of ARG-carrying MAGs, taxonomically assigned to genus of Bacillus, Pseudomonas, Acinetobacter, and Staphylococcus, was found increased during the pandemic. Bayesian source tracking estimated that human skin and anthropogenic activities were presumptive resistome sources for the public transit air. Moreover, risk assessment based on resistome and microbiome data revealed elevated airborne health risks during the pandemic. | 2023 | 36731187 |
| 3204 | 2 | 0.9998 | Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health. | 2022 | 34673316 |
| 3164 | 3 | 0.9997 | Variations in Bacterial Communities and Antibiotic Resistance Genes Across Diverse Recycled and Surface Water Irrigation Sources in the Mid-Atlantic and Southwest United States: A CONSERVE Two-Year Field Study. Reduced availability of agricultural water has spurred increased interest in using recycled irrigation water for U.S. food crop production. However, there are significant knowledge gaps concerning the microbiological quality of these water sources. To address these gaps, we used 16S rRNA gene and metagenomic sequencing to characterize taxonomic and functional variations (e.g., antimicrobial resistance) in bacterial communities across diverse recycled and surface water irrigation sources. We collected 1 L water samples (n = 410) between 2016 and 2018 from the Mid-Atlantic (12 sites) and Southwest (10 sites) U.S. Samples were filtered, and DNA was extracted. The V3-V4 regions of the 16S rRNA gene were then PCR amplified and sequenced. Metagenomic sequencing was also performed to characterize antibiotic, metal, and biocide resistance genes. Bacterial alpha and beta diversities were significantly different (p < 0.001) across water types and seasons. Pathogenic bacteria, such as Salmonella enterica, Staphylococcus aureus, and Aeromonas hydrophilia were observed across sample types. The most common antibiotic resistance genes identified coded against macrolides/lincosamides/streptogramins, aminoglycosides, rifampin and elfamycins, and their read counts fluctuated across seasons. We also observed multi-metal and multi-biocide resistance across all water types. To our knowledge, this is the most comprehensive longitudinal study to date of U.S. recycled water and surface water used for irrigation. Our findings improve understanding of the potential differences in the risk of exposure to bacterial pathogens and antibiotic resistance genes originating from diverse irrigation water sources across seasons and U.S. regions. | 2022 | 36194536 |
| 3191 | 4 | 0.9997 | Profiling of Bacterial Communities of Hospital Wastewater Reveals Clinically Relevant Genera and Antimicrobial Resistance Genes. In Mexico, hospital wastewater (HWW) is a source of chemical and microbiological contamination, and it is released into the municipal sewage system without prior treatment. This water may contain pathogenic bacteria and antimicrobial resistance genes, which represent a risk to Public Health and the environment. So far, there are no studies that analyse this problem comprehensively, relating bacterial population structures, chemical contaminants, and seasonality. The aim of this work was to seasonally characterise the bacterial communities of HWW, including clinically relevant bacteria and resistance genes in Hospital Juárez de México (HJM), and to evaluate the impact of physicochemical factors on their composition. A one-year observational, cross-sectional study was conducted at five HWW discharge points of HJM. Fourteen physicochemical parameters were determined by using standard methodologies, and statistical differences between discharges and seasons were evaluated. Bacterial communities were analysed by targeted amplicon sequencing of the V3-V4 region of the 16S rRNA gene. In addition, the presence of eight antimicrobial resistance genes of local epidemiological importance was assessed. Data were analysed using alpha and beta diversity indices, principal component analysis, and multivariate statistical tests. HWW showed high taxonomic diversity, with Proteobacteria, Firmicutes, and Bacteroidetes standing out. Clinically relevant bacteria were identified in 73.3% of the analyses, with Enterobacter and Escherichia-Shigella predominating. Total and dissolved solids, temperature, nitrate, and pH significantly influenced the bacterial composition of HWW. Seven out of the eight genes evaluated were identified, with bla(KPC), bla(OXA-40), and mcr-1 being the most frequent, showing significant seasonal differences. This study underlines the microbiological and chemical complexity of HWW, highlighting the impact of clinically relevant bacteria and antimicrobial resistance genes on Public Health. The findings emphasise the need to implement hospital waste management programmes and ideally specific treatment plants to minimise the associated risks and protect the environment and human health. | 2025 | 40572204 |
| 2581 | 5 | 0.9997 | Evaluation of the resistome and gut microbiome composition of hospitalized patients in a health unit of southern Brazil coming from a high animal husbandry production region. INTRODUCTION: Antimicrobial resistance (AMR) poses a significant threat to global public health. The One Health approach, which integrates human, animal, and environmental health, highlights the roles of agricultural and hospital settings in the propagation of AMR. This study aimed to analyze the resistome and gut microbiome composition of individuals from a high-intensity animal husbandry area in the western region of Santa Catarina, Southern Brazil, who were subsequently admitted to the University Hospital in the city of Florianopolis, located in the eastern part of the same state. METHODS: Rectal swab samples were collected upon admission and discharge. Metagenomic sequencing and resistome analysis were employed to identify antimicrobial resistance genes (ARGs) and their associated bacterial taxa. Additionally, the impact of the hospital environment on the resistome and microbiome profiles of these patients was assessed. RESULTS: A total of 247 genetic elements related to AMR were identified, with 66.4% of these elements present in both admission and discharge samples. Aminoglycoside resistance genes were the most prevalent, followed by resistance genes for tetracyclines and lincosamides. Notably, unique resistance genes, including dfrF and mutations in gyrB, were identified at discharge. ARGs were associated with 55 bacterial species, with Lactobacillus fermentum, harboring the ermB gene. (MLSB), detected in both admission and discharge samples. The most prevalent bacterial families included Mycobacteriaceae, Enterobacteriaceae, and Bacteroidaceae. Among these, Mycobacteriaceae was the most abundant, with ARGs primarily associated with mutations in the 16S rRNA gene, RNA polymerase subunits, and gyrases. DISCUSSION: The study revealed a high prevalence of genes related to aminoglycoside and tetracycline resistance, with a notable increase in certain resistance determinants at discharge, likely influenced by extended antimicrobial use. The presence of mcr genes, associated with colistin resistance, in both admission and discharge samples from a single patient highlights a concerning trend in AMR, particularly in relation to animal husbandry. These findings underscore the substantial impact of antimicrobial use on resistance development and the complex dynamics of the resistome in hospital settings. They also emphasize the influence of local factors, such as intensive animal production, on resistance patterns and advocate for ongoing surveillance and policy development to manage multidrug-resistant bacteria eVectively. | 2024 | 39896720 |
| 3190 | 6 | 0.9997 | Antimicrobials and antimicrobial resistance genes in the shadow of COVID-19 pandemic: A wastewater-based epidemiology perspective. Higher usage of antimicrobial agents in both healthcare facilities and the communities has resulted in an increased spread of resistant bacteria. However, the improved infection prevention and control practices may also contribute to decreasing antimicrobial resistance (AMR). In the present study, wastewater-based epidemiology (WBE) approach was applied to explore the link between COVID-19 and the community usage of antimicrobials, as well as the prevalence of resistance genes. Longitudinal study has been conducted to monitor the levels of 50 antimicrobial agents (AAs), 24 metabolites, 5 antibiotic resistance genes (ARGs) and class 1 integrons (intI 1) in wastewater influents in 4 towns/cities over two years (April 2020 - March 2022) in the South-West of England (a total of 1,180 samples collected with 87,320 individual AA measurements and 8,148 ARG measurements). Results suggested higher loads of AAs and ARGs in 2021-22 than 2020-21, with beta-lactams, quinolones, macrolides and most ARGs showing statistical differences. In particular, the intI 1 gene (a proxy of environmental ARG pollution) showed a significant increase after the ease of the third national lockdown in England. Positive correlations for all quantifiable parent AAs and metabolites were observed, and consumption vs direct disposal of unused AAs has been identified via WBE. This work can help establish baselines for AMR status in communities, providing community-wide surveillance and evidence for informing public health interventions. Overall, studies focused on AMR from the start of the pandemic to the present, especially in the context of environmental settings, are of great importance to further understand the long-term impact of the pandemic on AMR. | 2024 | 38692256 |
| 3217 | 7 | 0.9997 | Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs. | 2025 | 39689477 |
| 6591 | 8 | 0.9997 | Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Antimicrobial resistance (AMR) in bacteria and associated human morbidity and mortality is increasing. The use of antimicrobials in livestock selects for AMR that can subsequently be transferred to humans. This flow of AMR between reservoirs demands surveillance in livestock and in humans. We quantified and characterized the acquired resistance gene pools (resistomes) of 181 pig and 178 poultry farms from nine European countries, sequencing more than 5,000 Gb of DNA using shotgun metagenomics. We quantified acquired AMR using the ResFinder database and a second database constructed for this study, consisting of AMR genes identified through screening environmental DNA. The pig and poultry resistomes were very different in abundance and composition. There was a significant country effect on the resistomes, more so in pigs than in poultry. We found higher AMR loads in pigs, whereas poultry resistomes were more diverse. We detected several recently described, critical AMR genes, including mcr-1 and optrA, the abundance of which differed both between host species and between countries. We found that the total acquired AMR level was associated with the overall country-specific antimicrobial usage in livestock and that countries with comparable usage patterns had similar resistomes. However, functionally determined AMR genes were not associated with total drug use. | 2018 | 30038308 |
| 3205 | 9 | 0.9997 | Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy. | 2022 | 35033551 |
| 3192 | 10 | 0.9997 | Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria. | 2021 | 34254820 |
| 3114 | 11 | 0.9997 | Spatial and temporal dynamics of microbiomes and resistomes in broiler litter stockpiles. Farmers apply broiler chicken litter to soils to enrich organic matter and provide crops with nutrients, following varying periods of stockpiling. However, litter frequently harbors fecal-derived microbial pathogens and associated antibiotic resistance genes (ARGs), and may be a source of microbial contamination of produce. We coupled a cutting-edge Loop Genomics long-read 16S rRNA amplicon-sequencing platform with high-throughput qPCR that targeted a suite of ARGs, to assess temporal (five time points over a 60-day period) and spatial (top, middle and bottom layers) microbiome and resistome dynamics in a broiler litter stockpile. We focused on potentially pathogenic species from the Enterobacteriaceae, Enterococcaceae and Staphylococcaceae families associated with food-borne disease. Bacterial diversity was significantly lower in the middle of the stockpile, where targeted pathogens were lowest and Bacillaceae were abundant. E. coli was the most abundant Enterobacteriaceae species, and high levels of the opportunistic pathogen Enterococcus faecium were detected. Correlation analyses revealed that the latter was significantly associated with aminoglycoside (aac(6')-Ib(aka aacA4), aadA5), tetracycline (tetG), vancomycin (vanC), phenicol (floR) and MLSB (mphB) resistance genes. Staphylococcaceae were primarily non-pathogenic, but extremely low levels of the opportunistic pathogen S. aureus were detected, as was the opportunistic pathogen S. saprophyticus, which was linked to vancomycin (vanSA, vanC1), MLSB (vatE, ermB) and tetracycline (tetK) resistance genes. Collectively, we found that stockpile microbiomes and resistomes are strongly dictated by temporal fluctuations and spatial heterogeneity. Insights from this study can be exploited to improve stockpile management practice to support sustainable antimicrobial resistance mitigation policies in the future. | 2021 | 34900133 |
| 3216 | 12 | 0.9997 | Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols. | 2023 | 37119673 |
| 3193 | 13 | 0.9997 | Resistome Diversity and Dissemination of WHO Priority Antibiotic Resistant Pathogens in Lebanese Estuaries. Anthropogenic pressure is known to be a key driver of antimicrobial resistance (AMR) dissemination in the environment. Especially in lower income countries, with poor infrastructure, the level of AMR dissemination is high. Therefore, we assessed the levels and diversity of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Lebanese rivers at estuaries' sites (n = 72) of the Mediterranean Sea in spring 2017 and winter 2018. METHODS: A combined approach using culture techniques and high throughput qPCR were applied to identify ARB and ARGs in rivers along the Lebanese coast. RESULTS: Multidrug-resistant Gram-negative (Enterobacterales and Pseudomonas spp.) and Gram-positive bacterial pathogens were isolated. Levels of ARGs were highest in the winter campaign and areas with high anthropogenic activities and population growth with an influx of refugees. CONCLUSION: Qualitative analysis of ARB and the analysis of the Lebanese estuaries' resistome revealed critical levels of contamination with pathogenic bacteria and provided significant information about the spread of ARGs in anthropogenically impacted estuaries. | 2022 | 35326767 |
| 3208 | 14 | 0.9997 | Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China. Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (bla(KPC) and bla(VIM)) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying bla(CTX-M-55) were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. | 2025 | 40732167 |
| 3276 | 15 | 0.9997 | Deciphering risks of resistomes and pathogens in intensive laying hen production chain. Antimicrobial resistance (AMR) and pathogens derived from food animals and their associated environments have emerged as challenging threats to humans from a health perspective, but our understanding of these risks and their key prevention and control points in the current intensive breeding industry remains poor. By creating an integral composition and risk profile of the resistome and microbiome through metagenomics in feces, flies, dust, sewage, and soil along the four-stage laying hen production chain, we found that the whole production chain is a hotspot for antimicrobial resistance genes (ARGs) with 374 known subtypes and pathogens, including 157 human pathogenic bacteria (HPB). Feces and flies were identified as major risk sources for these contaminations. Also, we confirmed a twin-risk of AMR and pathogenicity prevailing throughout the chain, but with different frequencies in each stage; thus, high-risk ARGs in the young chicken stage and highly prioritized HPB in the chick stage contributed 37.33 % to the total AMR risk and 36.36 % to the pathogenic risks, respectively, thus rendering the two stages to be the key prevention points. Moreover, the prevalence of 112 binned ARG supercarriers (for example, Klebsiella pneumoniae harboring 20 ARGs) was unraveled along the production chain, especially in feces, flies, and dust, and 87 potential hosts exhibited high pathogenic risk, high-risk AMR, or both, with 262 ARGs and 816 virulence factor genes. Overall, this study provides first-hand comprehensive data on high-risk ARGs and their pathogenic hosts in the intensive laying hen production chain, and thus is fundamentally important for developing new measures to help control the global AMR crisis induced through the animal-environment-human pathway. | 2023 | 36702267 |
| 3494 | 16 | 0.9997 | Pathogenic bacteria and antibiotic resistance genes in hospital indoor bioaerosols: pollution characteristics, interrelation analysis, and inhalation risk assessment. Hospitals are high risk areas for the spread of diseases, with indoor bioaerosols containing a variety of pathogens. Inhalation of these pathogens may cause severe nosocomial infections in patients and medical staff. A comprehensive investigation was conducted during the influenza A outbreak to explore the distribution and pathogenic risk of airborne pathogens and antibiotic resistance genes (ARGs) across different hospital departments. It was revealed that airborne bacterial concentrations ranged from 118 to 259 CFU/m(3), and the main aerosol particle size was 4.7-5.8 μm (27.7 %). The proportion of bioaerosols smaller than 2.5 μm was highest in the respiratory waiting area (59.3 %). The dominant pathogens detected in hospital air were Bacillus, Staphylococcus, Pseudomonas and Micrococcus. The absolute abundance of ARGs/mobile genetic elements (MGEs) ranged from 0.55 to 479.44 copies/m(3), peaking in the respiratory ward air. TetL-02, lnuA-01, intI1, ermB, and qacEdelta1-02 were the top five ARGs/MGEs in hospital air. Moreover, doctors inhaled higher doses of ARGs/MGEs in inpatient wards than outpatient waiting areas. Network analysis identified Pseudomonas, Micrococcus, Microbacterium, and Enterobacter as potential ARGs reservoirs. The Bugbase result showed the presence of potentially pathogenic pathogens in the bioaerosols at all sampling sites. The quantitative microbiological risk assessment results further showed that airborne Staphylococcus could pose an infection risk to medical staff. It was determined that the use of masks was effective in reducing this risk to an acceptable level. This study will provide a scientific basis for comprehensively understanding the characteristics and potential risks of hospital bioaerosols during the outbreak of respiratory infectious diseases. | 2025 | 40222613 |
| 3112 | 17 | 0.9997 | Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products. | 2025 | 39699181 |
| 3187 | 18 | 0.9997 | Metagenomic Analysis of Antibiotic Resistance Genes in Untreated Wastewater From Three Different Hospitals. Controlling antibiotic resistance genes (ARGs) is a worldwide intervention to ensure global health. Hospital wastewater is the main pollution source of antibiotic-resistant bacteria and ARGs in the environment. Expanding our knowledge on the bacterial composition of hospital wastewater could help us to control infections in hospitals and decrease pathogen release into the environment. In this study, a high-throughput sequencing-based metagenomic approach was applied to investigate the community composition of bacteria and ARGs in untreated wastewater from three different types of hospitals [the general hospital, traditional Chinese medicine (TCM) hospital, and stomatology hospital]. In total, 130 phyla and 2,554 genera were identified from the microbiota of the wastewaters, with significantly different bacterial community compositions among the three hospitals. Total ARG analysis using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Resistance Database (CARD) revealed that the microbiota in the wastewaters from the three hospitals harbored different types and percentage of ARGs, and their composition was specific to the hospital type based on the correlation analysis between species and ARG abundance, some ARGs contributed to different bacterial genera with various relationships in different hospitals. In summary, our findings demonstrated a widespread occurrence of ARGs and ARG-harboring microbiota in untreated wastewaters of different hospitals, suggesting that protection measures should be applied to prevent human infections. Concurrently, hospital wastewater should be treated more specifically for the removal of pathogens before its discharge into the urban sewage system. | 2021 | 34504480 |
| 5365 | 19 | 0.9997 | Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., bla(NDM)), 3rd and 4th generation cephalosporins (i.e., bla(CMY-2)), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role. | 2024 | 39334983 |