Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
310201.0000Multidrug resistance phenotypes are widespread over different bacterial taxonomic groups thriving in surface water. The environment is the original and most ancient source of the antibiotic resistance determinants that threat the human health nowadays. In the environment, water is a privileged habitat and mode of dissemination of bacteria of different origins. Freshwater bodies that cross urban areas are supposed to hold a complex mixture of both human/animal origin and strictly environmental bacteria. In this study, we were interested in unveiling the bacterial diversity in urban river transects and, simultaneously, investigate the occurrence of antibiotic resistant bacteria, in particular the multidrug resistant (MDR). With this aim, water and sediments of two rivers were sampled from an urban transect and the bacterial diversity was assessed based on 16S rRNA gene-based community analysis and, simultaneously, total heterotrophic bacteria were isolated in the presence and in the absence of antibiotics. The three predominant phyla were Proteobacteria, Bacteroidetes and Actinobacteria, in water, or Acidobacteria, in sediments. MDR bacteria were observed to belong to the predominant phyla observed in water, mostly of the classes Gamma- and Betaproteobacteria (Proteobacteria) and Sphingobacteriia and Flavobacteriia (Bacteroidetes) and belonged to genera of ubiquitous (Pseudomonas, Acinetobacter, Stenotrophomonas) or mainly environmental (Chitinophaga, Chryseobacterium) bacteria. The observation that MDR bacteria are widespread in the environment and over distinct phylogenetic lineages has two relevant implications: i) the potential of environmental bacteria as source or facilitators for antibiotic resistance acquisition; ii) the need to complement culture-independent methods with culture-based approaches in order to identify major sources of MDR profiles.201627131885
345410.9998Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Anthropogenic activities are a key factor in the development of antibiotic resistance in bacteria, a growing problem worldwide. Nevertheless, antibiotics and resistances were being generated by bacterial communities long before their discovery by humankind, and might occur in areas without human influence. Bacteriophages are known to play a relevant role in the dissemination of antibiotic resistance genes (ARGs) in aquatic environments. In this study, five ARGs (bla(TEM), bla(CTX-M-1), bla(CTX-M-9), sul1 and tetW) were monitored in phage particles isolated from seawater of two different locations: (i) the Mediterranean coast, subjected to high anthropogenic pressure, and (ii) the Antarctic coast, where the anthropogenic impact is low. Although found in lower quantities, ARG-containing phage particles were more prevalent among the Antarctic than the Mediterranean seawater samples and Antarctic bacterial communities were confirmed as their source. In the Mediterranean area, ARG-containing phages from anthropogenic fecal pollution might allow ARG transmission through the food chain. ARGs were detected in phage particles isolated from fish (Mediterranean, Atlantic, farmed, and frozen), the most abundant being β-lactamases. Some of these particles were infectious in cultures of the fecal bacteria Escherichia coli. By serving as ARG reservoirs in marine environments, including those with low human activity, such as the Antarctic, phages could contribute to ARG transmission between bacterial communities.202032847015
310320.9998The microbiome of a polluted urban lake harbors pathogens with diverse antimicrobial resistance and virulence genes. Bacterial resistance to antibiotics is one of the greatest threats to the modern human population. Paradoxically, urban settlements are often culpable in generating such resistance by influencing the adaptation of bacterial communities via pollution of natural ecosystems. Urban lakes are well-known examples of this problem, as they often receive discharges of both domestic and industrial wastewater. In this study, we used shotgun metagenome sequencing to examine the microbial diversity of water and sediment samples of Lake Alalay, a polluted urban lake near Cochabamba, Bolivia. We found that Proteobacteria dominated the relative abundance of both water and sediment samples at levels over 25% and that a significant proportion of the microbial diversity could not be classified (about 9% in water and 22% in sediment). Further metagenomic investigation of antimicrobial resistance (AR) genes identified 277 and 150 AR genes in water and sediment samples, respectively. These included genes with functional annotations for resistance to fluoroquinolones, tetracyclines, phenicols, macrolides, beta-lactams, and rifamycin. A high number of genes involved in bacterial virulence also occurred in both water and sediment samples (169 and 283, respectively), where the virulence gene pscP normally found in the Pseudomonas aeruginosa type III secretion system had the highest relative abundance. Isolated and identified bacteria from water samples also revealed the presence of pathogenic bacteria among the microbiota of Lake Alalay. Seeing as most AR and virulence genes detected in this study are commonly described in nosocomial infections, we provide evidence suggesting that the microbial ecosystem of Lake Alalay presents a severe health risk to the surrounding population.202133485000
367930.9998Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. Antibiotics are commonly used in aquaculture and they can change the environmental resistome by increasing antibiotic resistance genes (ARGs). Sediment samples were collected from two fish farms located in the Northern Baltic Sea, Finland, and from a site outside the farms (control). The sediment resistome was assessed by using a highly parallel qPCR array containing 295 primer sets to detect ARGs, mobile genetic elements and the 16S rRNA gene. The fish farm resistomes were enriched in transposon and integron associated genes and in ARGs encoding resistance to antibiotics which had been used to treat fish at the farms. Aminoglycoside resistance genes were also enriched in the farm sediments despite the farms not having used aminoglycosides. In contrast, the total relative abundance values of ARGs were higher in the control sediment resistome and they were mainly genes encoding efflux pumps followed by beta-lactam resistance genes, which are found intrinsically in many bacteria. This suggests that there is a natural Baltic sediment resistome. The resistome associated with fish farms can be from native ARGs enriched by antibiotic use at the farms and/or from ARGs and mobile elements that have been introduced by fish farming.201626976842
325340.9998Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species.202336760505
310450.9998The relationship between water quality and the microbial virulome and resistome in urban streams in Brazil. Urban streams that receive untreated domestic and hospital waste can transmit infectious diseases and spread drug residues, including antimicrobials, which can then increase the selection of antimicrobial-resistant bacteria. Here, water samples were collected from three different urban streams in the state of São Paulo, Brazil, to relate their range of Water Quality Indices (WQIs) to the diversity and composition of aquatic microbial taxa, virulence genes (virulome), and antimicrobial resistance determinants (resistome), all assessed using untargeted metagenome sequencing. There was a predominance of phyla Proteobacteria, Actinobacteria, and Bacteroidetes in all samples, and Pseudomonas was the most abundant detected genus. Virulence genes associated with motility, adherence, and secretion systems were highly abundant and mainly associated with Pseudomonas aeruginosa. Furthermore, some opportunistic pathogenic genera had negative correlations with WQI. Many clinically relevant antimicrobial resistance genes (ARGs) and efflux pump-encoding genes that confer resistance to critically important antimicrobials were detected. The highest relative abundances of ARGs were β-lactams and macrolide-lincosamide-streptogramin. No statistically supported relationship was detected between the abundance of virulome/resistome and collection type/WQI. On the other hand, total solids were a weak predictor of gene abundance patterns. These results provide insights into various microbial outcomes given urban stream quality and point to its ecological complexity. In addition, this study suggests potential consequences for human health as mediated by aquatic microbial communities responding to typical urban outputs.202438522607
710760.9998A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment.202236009027
346170.9998Metagenomics insights into bacterial diversity and antibiotic resistome of the sewage in the city of Belém, Pará, Brazil. INTRODUCTION: The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics. METHODS: One liter of surface water was collected at four points of a sewage channel, and after filtration, the total DNA was extracted and then sequenced on an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and the microbiome was predicted using the Kraken software, while the resistome was analyzed on the CARD webserver. All ecological and statistical analyses were performed using the. RStudio tool. RESULTS AND DISCUSSION: The complete metagenome results showed a community with high diversity at the beginning and more restricted diversity at the end of the sampling, with a predominance of the phyla Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered pathogenic, with an emphasis on those belonging to the Enterobacteriaceae family. It was possible to identify bacterial groups of different threat levels to human health according to a report by the U.S. Centers for Disease Control and Prevention. The resistome analysis predominantly revealed genes that confer resistance to multiple drugs, followed by aminoglycosides and macrolides, with efflux pumps and drug inactivation being the most prevalent resistance mechanisms. This work was pioneering in characterizing resistance in a sanitary environment in the Amazon region and reinforces that sanitation measures for urban sewage are necessary to prevent the advancement of antibiotic resistance and the contamination of water resources, as evidenced by the process of eutrophication.202439629213
347380.9998Distribution of antibiotic resistance genes in glacier environments. Antibiotic resistance genes are biologically transmitted from microorganism to microorganism in particular micro-environments where dense microbial communities are often exposed to an intensive use of antibiotics, such as intestinal microflora, and the soil microflora of agricultural fields. However, recent studies have detected antibiotic-resistant bacteria and/or antibiotic resistance genes in the natural environment geographically isolated from such areas. Here we sought to examine the prevalence of antibiotic resistance genes in 54 snow and ice samples collected from the Arctic, Antarctic, Central Asia, North and South America and Africa, to evaluate the level of these genes in environments supposedly not affected by anthropogenic factors. We observed a widespread distribution of antibiotic resistance genes in samples from various glaciers in Central Asia, North and South America, Greenland and Africa. In contrast, Antarctic glaciers were virtually free from these genes. Antibiotic resistance genes, of both clinical (i.e. aac(3), blaIMP) and agricultural (i.e. strA and tetW) origin, were detected. Our results show regional geographical distribution of antibiotic resistance genes, with the most plausible modes of transmission through airborne bacteria and migrating birds.201323757141
732590.9998Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks.202439500921
3468100.9998Facultative pathogenic bacteria and antibiotic resistance genes in swine livestock manure and clinical wastewater: A molecular biology comparison. Manure contains vast amounts of biological contaminants of veterinary origin. Only few studies analyse clinically critical resistance genes against reserve antibiotics in manure. In general, resistances against these high priority antibiotics involve a high potential health risk. Therefore, their spread in the soil as well as the aquatic environment has to be prevented. Manures of 29 different swine livestock were analysed. Abundances of facultative pathogenic bacteria including representatives of the clinically critical ESKAPE-pathogens (P. aeruginosa, K. pneumoniae, A. baumannii, E. faecium) and E. coli were investigated via qPCR. Antibiotic resistance genes against commonly used veterinary antibiotics (ermB, tetM, sul1) as well as various resistance genes against important (mecA, vanA) and reserve antibiotics (bla(NDM), bla(KPC3), mcr-1), which are identified by the WHO, were also obtained by qPCR analysis. The manures of all swine livestock contained facultative pathogenic bacteria and commonly known resistance genes against antibiotics used in veterinary therapies, but more important also a significant amount of clinically critical resistance genes against reserve antibiotics for human medicine. To illustrate the impact the occurrence of these clinically critical resistance genes, comparative measurements were taken of the total wastewater of a large tertiary care hospital (n = 8). Both manure as well as raw hospital wastewaters were contaminated with significant abundances of gene markers for facultative pathogens and with critical resistance genes of reserve antibiotics associated with genetic mobile elements for horizontal gene transfer. Hence, both compartments bear an exceptional potential risk for the dissemination of facultative pathogens and critical antibiotic resistance genes.202236089145
3719110.9998Vancomycin-Resistant Enterococci and Bacterial Community Structure following a Sewage Spill into an Aquatic Environment. Sewage spills can release antibiotic-resistant bacteria into surface waters, contributing to environmental reservoirs and potentially impacting human health. Vancomycin-resistant enterococci (VRE) are nosocomial pathogens that have been detected in environmental habitats, including soil, water, and beach sands, as well as wildlife feces. However, VRE harboring vanA genes that confer high-level resistance have infrequently been found outside clinical settings in the United States. This study found culturable Enterococcus faecium harboring the vanA gene in water and sediment for up to 3 days after a sewage spill, and the quantitative PCR (qPCR) signal for vanA persisted for an additional week. Culturable levels of enterococci in water exceeded recreational water guidelines for 2 weeks following the spill, declining about five orders of magnitude in sediments and two orders of magnitude in the water column over 6 weeks. Analysis of bacterial taxa via 16S rRNA gene sequencing showed changes in community structure through time following the sewage spill in sediment and water. The spread of opportunistic pathogens harboring high-level vancomycin resistance genes beyond hospitals and into the broader community and associated habitats is a potential threat to public health, requiring further studies that examine the persistence, occurrence, and survival of VRE in different environmental matrices. IMPORTANCE: Vancomycin-resistant enterococci (VRE) are harmful bacteria that are resistant to the powerful antibiotic vancomycin, which is used as a last resort against many infections. This study followed the release of VRE in a major sewage spill and their persistence over time. Such events can act as a means of spreading vancomycin-resistant bacteria in the environment, which can eventually impact human health.201627422829
3192120.9998Metagenome-Wide Analysis of Rural and Urban Surface Waters and Sediments in Bangladesh Identifies Human Waste as a Driver of Antibiotic Resistance. In many low- and middle-income countries, antibiotic-resistant bacteria spread in the environment due to inadequate treatment of wastewater and the poorly regulated use of antibiotics in agri- and aquaculture. Here, we characterized the abundance and diversity of antibiotic-resistant bacteria and antibiotic resistance genes in surface waters and sediments in Bangladesh through quantitative culture of extended-spectrum beta-lactamase (ESBL)-producing coliforms and shotgun metagenomics. Samples were collected from highly urbanized settings (n = 7), rural ponds with a history of aquaculture-related antibiotic use (n = 11), and rural ponds with no history of antibiotic use (n = 6). ESBL-producing coliforms were found to be more prevalent in urban samples than in rural samples. Shotgun sequencing showed that sediment samples were dominated by the phylum Proteobacteria (on average, 73.8% of assigned reads), while in the water samples, Cyanobacteria were the predominant phylum (on average, 60.9% of assigned reads). Antibiotic resistance genes were detected in all samples, but their abundance varied 1,525-fold between sites, with the highest levels of antibiotic resistance genes being present in urban surface water samples. The abundance of antibiotic resistance genes was significantly correlated (R(2) = 0.73; P = 8.9 × 10(-15)) with the abundance of bacteria originating from the human gut, which suggests that the release of untreated sewage is a driver for the spread of environmental antibiotic resistance genes in Bangladesh, particularly in highly urbanized settings. IMPORTANCE Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh. We found that urban surface waters are particularly rich in antibiotic resistance genes, with a higher number of them associated with plasmids, indicating that they are more likely to spread horizontally. The abundance of antibiotic resistance genes was strongly correlated with the abundance of bacteria that originate from the human gut, suggesting that uncontrolled release of human waste is a major driver for the spread of antibiotic resistance in the urban environment. Improvements in sanitation in LMICs may thus be a key intervention to reduce the dissemination of antibiotic-resistant bacteria.202134254820
3472130.9998Selective pressure governs the composition, antibiotic, and heavy metal resistance profiles of Aeromonas spp. isolated from Ba River in Northwest China. The selective pressure of the living surroundings is a key factor in the development of resistance profiles in pathogenic bacteria such as Aeromonas spp. In this study, Aeromonas species were isolated from the Ba River, and their composition, resistance profiles to antibiotics, and heavy metals (HMs) were investigated. The discovery revealed that selective pressure altered the diversity of Aeromonas spp., with Aeromonas veronii being more adaptable to contaminated waters. Long-term exposure to antibiotics or HMs exerts persistent selective pressure on Aeromonas species, leading to the increase in multiple antibiotic resistance (MAR) index and multidrug-resistant (MDR) strains. Furthermore, HMs could drive the co-selection of antibiotic resistance via co-resistance or cross-resistance. bla(TEM), bla(SHV), bla(CTX-M), sul1, czcA, mexA, and mexF were detected at high frequencies in Aeromonas species. Among these resistance phenotypes conferred genes, bla(TEM) may be intrinsic in the genome of Aeromonas spp., while mexA and mexF may have been acquired from surrounding environments owing to selective pressure. Resistance genes evolved as a consequence of selective pressure and have been shown to be positively correlated with their prevalence. Our study suggests that the selective pressure of living surroundings significantly contributes to the composition and resistance profiles of Aeromonas spp. in the riverine ecosystem.202235657546
3681140.9998A closer look at the antibiotic-resistant bacterial community found in urban wastewater treatment systems. The conventional biological treatment process can provide a favorable environment for the maintenance and dissemination of antibiotic-resistant bacteria and the antibiotic resistance genes (ARG) they carry. This study investigated the occurrence of antibiotic resistance in three wastewater treatment plants (WWTP) to determine the role they play in the dissemination of ARGs. Bacterial isolates resistant to tetracycline were collected, and tested against eight antibiotics to determine their resistance profiles and the prevalence of multiple antibiotic resistance. It was found that bacteria resistant to tetracycline were more likely to display resistance to multiple antibiotics compared to those isolates that were not tetracycline resistant. Polymerase chain reaction (PCR) was used to identify the tetracycline resistance determinants present within the bacterial communities of the WWTPs and receiving waters, and it was found that ARGs may not be released from the treatment process. Identification of isolates showed that there was a large diversity of species in both the tetracycline-resistant and tetracycline-sensitive populations and that the two groups were significantly different in composition. Antibiotic resistance profiles of each population showed that a large diversity of resistance patterns existed within genera suggesting that transmission of ARG may progress by both horizontal gene and vertical proliferation.201829484827
7293150.9998Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination.201830420129
4987160.9998The Human Health Implications of Antibiotic Resistance in Environmental Isolates from Two Nebraska Watersheds. One Health field-based approaches are needed to connect the occurrence of antibiotics present in the environment with the presence of antibiotic resistance genes (ARGs) in Gram-negative bacteria that confer resistance to antibiotics important in for both veterinary and human health. Water samples from two Nebraska watersheds influenced by wastewater effluent and agricultural runoff were tested for the presence of antibiotics used in veterinary and human medicine. The water samples were also cultured to identify the bacteria present. Of those bacteria isolated, the Gram-negative rods capable of causing human infections had antimicrobial susceptibility testing and whole-genome sequencing (WGS) performed to identify ARGs present. Of the 211 bacterial isolates identified, 37 belonged to pathogenic genera known to cause human infections. Genes conferring resistance to beta-lactams, aminoglycosides, fosfomycins, and quinolones were the most frequently detected ARGs associated with horizontal gene transfer (HGT) in the watersheds. WGS also suggest recent HGT events involving ARGs transferred between watershed isolates and bacteria of human and animal origins. The results of this study demonstrate the linkage of antibiotics and bacterial ARGs present in the environment with potential human and/or veterinary health impacts. IMPORTANCE One health is a transdisciplinary approach to achieve optimal health for humans, animals, plants and their shared environment, recognizing the interconnected nature of health in these domains. Field based research is needed to connect the occurrence of antibiotics used in veterinary medicine and human health with the presence of antibiotic resistance genes (ARGs). In this study, the presence of antibiotics, bacteria and ARGs was determined in two watersheds in Nebraska, one with agricultural inputs and the other with both agricultural and wastewater inputs. The results presented in this study provide evidence of transfer of highly mobile ARG between environment, clinical, and animal-associated bacteria.202235311538
3683170.9998Small and large-scale distribution of four classes of antibiotics in sediment: association with metals and antibiotic resistance genes. Antibiotic chemicals and antibiotic resistance genes enter the environment via wastewater effluents as well as from runoff from agricultural operations. The relative importance of these two sources, however, is largely unknown. The relationship between the concentrations of chemicals and genes requires exploration, for antibiotics in the environment may lead to development or retention of resistance genes by bacteria. The genes that confer resistance to metal toxicity may also be important in antibiotic resistance. In this work, concentrations of 19 antibiotics (using liquid chromatography tandem mass spectrometry), 14 metals (using inductively coupled plasma-mass spectrometry), and 45 metal, antibiotic, and antibiotic-resistance associated genes (using a multiplex, microfluidic quantitative polymerase chain reaction method) were measured in 13 sediment samples from two large rivers as well as along a spatial transect in a wastewater effluent-impacted lake. Nine of the antibiotics were detected in the rivers and 13 were detected in the lake. Sixteen different resistance genes were detected. The surrounding land use and proximity to wastewater treatment plants are important factors in the number and concentrations of antibiotics detected. Correlations among antibiotic chemical concentrations, metal concentrations, and resistance genes occur over short spatial scales in a lake but not over longer distances in major rivers. The observed correlations likely result from the chemicals and resistance genes arising from the same source, and differences in fate and transport over larger scales lead to loss of this relationship.201830043816
3677180.9998Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment.201424637153
3462190.9998Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. AIMS: The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS: In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS: Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.202438627246