# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3100 | 0 | 1.0000 | Metagenomic Comparison of Antibiotic Resistance Genes Associated with Liquid and Dewatered Biosolids. Municipal biosolids (MBs) that are land-applied in North America are known to possess an active microbial population that can include human pathogens. Activated sludge is a hotspot for the accumulation of antibiotics and has been shown to be a selective environment for microorganisms that contain antibiotic resistance genes (ARGs); however, the prevalence of ARGs in MBs is not well characterized. In this study, we enriched the plasmid metagenome from raw sewage sludge and two CP2 MBs, a mesophilic anaerobic digestate and a dewatered digestate, to evaluate the presence of ARGs in mobile genetic elements. The CP2-class biosolids are similar to Class B biosolids in the United States. The CP2 biosolids must meet a microbiological cut off of 2 × 10 colony-forming units (CFU) per dry gram or 100 mL of biosolids. The enriched plasmid DNA was sequenced (Illumina MiSeq). Sequence matching against databases, including the Comprehensive Antibiotic Resistance Database (CARD), MG-RAST, and INTEGRALL, identified potential genes of interest related to ARGs and their ability to transfer. The presence and abundance of different ARGs varied between treatments with heterogeneity observed among the same sample types. The MBs plasmid-enriched metagenomes contained ARGs associated with resistance to a variety of antibiotics, including β-lactams, rifampicin, quinolone, and tetracycline as well as the detection of extended spectrum β-lactamase genes. Cultured bacteria from CP2 MBs possessed antibiotic resistances consistent with the MBs metagenome data including multiantibiotic-resistant isolates. The results from this study provide a better understanding of the ARG and MGE profile of the plasmid-enriched metagenome of CP2 MBs. | 2016 | 27065392 |
| 7324 | 1 | 0.9997 | Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge. | 2020 | 32140141 |
| 3459 | 2 | 0.9997 | Diversity of antibiotic resistance gene variants at subsequent stages of the wastewater treatment process revealed by a metagenomic analysis of PCR amplicons. Wastewater treatment plants have been recognised as point sources of various antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) which are considered recently emerging biological contaminants. So far, culture-based and molecular-based methods have been successfully applied to monitor antimicrobial resistance (AMR) in WWTPs. However, the methods applied do not permit the comprehensive identification of the true diversity of ARGs. In this study we applied next-generation sequencing for a metagenomic analysis of PCR amplicons of ARGs from the subsequent stages of the analysed WWTP. The presence of 14 genes conferring resistance to different antibiotic families was screened by PCR. In the next step, three genes were selected for detailed analysis of changes of the profile of ARG variants along the process. A relative abundance of 79 variants was analysed. The highest diversity was revealed in the ermF gene, with 52 variants. The relative abundance of some variants changed along the purification process, and some ARG variants might be present in novel hosts for which they were currently unassigned. Additionally, we identified a pool of novel ARG variants present in the studied WWTP. Overall, the results obtained indicated that the applied method is sufficient for analysing ARG variant diversity. | 2023 | 38274111 |
| 3461 | 3 | 0.9997 | Metagenomics insights into bacterial diversity and antibiotic resistome of the sewage in the city of Belém, Pará, Brazil. INTRODUCTION: The advancement of antimicrobial resistance is a significant public health issue today. With the spread of resistant bacterial strains in water resources, especially in urban sewage, metagenomic studies enable the investigation of the microbial composition and resistance genes present in these locations. This study characterized the bacterial community and antibiotic resistance genes in a sewage system that receives effluents from various sources through metagenomics. METHODS: One liter of surface water was collected at four points of a sewage channel, and after filtration, the total DNA was extracted and then sequenced on an NGS platform (Illumina® NextSeq). The sequenced data were trimmed, and the microbiome was predicted using the Kraken software, while the resistome was analyzed on the CARD webserver. All ecological and statistical analyses were performed using the. RStudio tool. RESULTS AND DISCUSSION: The complete metagenome results showed a community with high diversity at the beginning and more restricted diversity at the end of the sampling, with a predominance of the phyla Bacteroidetes, Actinobacteria, Firmicutes, and Proteobacteria. Most species were considered pathogenic, with an emphasis on those belonging to the Enterobacteriaceae family. It was possible to identify bacterial groups of different threat levels to human health according to a report by the U.S. Centers for Disease Control and Prevention. The resistome analysis predominantly revealed genes that confer resistance to multiple drugs, followed by aminoglycosides and macrolides, with efflux pumps and drug inactivation being the most prevalent resistance mechanisms. This work was pioneering in characterizing resistance in a sanitary environment in the Amazon region and reinforces that sanitation measures for urban sewage are necessary to prevent the advancement of antibiotic resistance and the contamination of water resources, as evidenced by the process of eutrophication. | 2024 | 39629213 |
| 7323 | 4 | 0.9997 | Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment. Aquatic ecosystems have been increasingly threatened by anthropogenic activities, e.g., wastewater discharge and farm operation. Several methods are adopted to evaluate the effects of anthropogenic activities on biological risk in the environment, such as qPCR and amplicon next-generation sequencing. However, these methods fall short of providing genomic information of target species, which is vital for risk assessment from genomic aspect. Here, we developed a novel approach integrating metagenomic analysis and flow cytometry to identify and quantify potential pathogenic antibiotic resistant bacteria (PARB; carrying both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs)) in the environment, which are of particular concern due to their infection ability and antibiotic resistance. Based on the abundance/density of PARB, we evaluated microbiological risk in a river impacted by both municipal drainage and agriculture runoff. We collected samples upstream (mountainous area) as the control. Results showed that 81.8% of dominant PARB (33) recovered using our approach were related to known pathogenic taxa. In addition, intragenomic ARGs-VFGs coexistence patterns in the dominant Pseudomonas genomes (20 out of 71 PARB) showed high similarity with the most closely related Pseudomonas genomes from the NCBI RefSeq database. These results reflect acceptable reliability of the approach for (potential) pathogen identification in environmental samples. According to the PARB density, microbiological risk in samples from the agricultural area was significantly higher than in samples from the urban area. We speculated that this was due to the higher antibiotic usage in agriculture as well as intragenomic ARGs-VFGs co-evolution under antibiotic selective pressure. This study provides an alternative approach for the identification and quantification of PARB in aquatic environments, which can be applied for microbiological risk assessment. | 2020 | 31614233 |
| 3345 | 5 | 0.9997 | Novel clinically relevant antibiotic resistance genes associated with sewage sludge and industrial waste streams revealed by functional metagenomic screening. A growing body of evidence indicates that anthropogenic activities can result in increased prevalence of antimicrobial resistance genes (ARGs) in bacteria in natural environments. Many environmental studies have used next-generation sequencing methods to sequence the metagenome. However, this approach is limited as it does not identify divergent uncharacterized genes or demonstrate activity. Characterization of ARGs in environmental metagenomes is important for understanding the evolution and dissemination of resistance, as there are several examples of clinically important resistance genes originating in environmental species. The current study employed a functional metagenomic approach to detect genes encoding resistance to extended spectrum β-lactams (ESBLs) and carbapenems in sewage sludge, sludge amended soil, quaternary ammonium compound (QAC) impacted reed bed sediment and less impacted long term curated grassland soil. ESBL and carbapenemase genes were detected in sewage sludge, sludge amended soils and QAC impacted soil with varying degrees of homology to clinically important β-lactamase genes. The flanking regions were sequenced to identify potential host background and genetic context. Novel β-lactamase genes were found in Gram negative bacteria, with one gene adjacent to an insertion sequence ISPme1, suggesting a recent mobilization event and/ the potential for future transfer. Sewage sludge and quaternary ammonium compound (QAC) rich industrial effluent appear to disseminate and/or select for ESBL genes which were not detected in long term curated grassland soils. This work confirms the natural environment as a reservoir of novel and mobilizable resistance genes, which may pose a threat to human and animal health. | 2019 | 31487611 |
| 3101 | 6 | 0.9997 | Revealing antimicrobial resistance in stormwater with MinION. Discharge of urban stormwater containing organic matter, heavy metals and sometime human feces, to the natural aquatic reservoirs without any treatment is not only an environmental problem. It can lead to prevalence of antibiotic resistant bacteria in stormwater systems and transmission of antibiotic resistance genes to the environment. We performed antibiotic resistome identification and virus detection in stormwater samples from Stockholm, using publicly available metagenomic sequencing MinION data. A MinION platform offers low-cost, precise environmental metagenomics analysis. 37 groups of antibiotic resistant bacteria (ARB), 11 resistance types with 26 resistance mechanisms - antibiotic resistance genes (ARGs) giving tolerance to the aminoglycoside, beta-lactams, fosmidomycin, MLS, multidrug and vancomycin were identified using ARGpore pipeline. The majority of the identified bacteria species were related to the natural environment such as soil and were not dangerous to human. Alarmingly, human pathogenic bacteria carrying resistance to antibiotics currently used against them (Bordetella resistant to macrolides and multidrug resistant Propionibacterium avidum) were also found in the samples. Most abundant viruses identified belonged to Caudovirales and Herpesvirales and they were not carrying ARGs. Unlike the virome, resistome and ARB were not unique for stormwater sampling points. This results underline the need for extensive monitoring of the microbial community structure in the urban stormwater systems to assess antimicrobial resistance spread. | 2020 | 32947654 |
| 3098 | 7 | 0.9997 | Bacterial Communities and Resistance and Virulence Genes in Hospital and Community Wastewater: Metagenomic Analysis. Metagenomic studies have made it possible to deepen the analysis of the abundance of bacterial populations that carry resistance and virulence determinants in the wastewater environment. In this study, a longitudinal collection of samples of community and hospital wastewater from August 2021 to September 2022 was obtained. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize the bacterial abundance, antimicrobial resistance genes (ARGs), plasmids, and virulence factor genes (VFGs) contained in the wastewater. The microbial composition of the community and hospital wastewater showed that the most abundant bacterial phyla detected in all samples were: Proteobacteria, Bacteroides, Firmicutes, Campylobacterota, and Actinobacteria. Seasonal differences in the relative abundances of species, ARGs, plasmids, and VFGs were observed. In this study, a total of 270 ARGs were detected, and it was found that the absolute abundance of ARGs only showed a 39% reduction in the treated wastewater. Furthermore, the ARGs detected in this study were found to encode resistance to antibiotics of the last choice. Our results showed that plasmids carrying resistance genes were more abundant in raw wastewater, and 60% more abundant in hospital wastewater compared to community wastewater. Several of the VFGs detected in this study encode for adhesion, motility, and biofilm formation, which likely allows bacteria to remain and persist in the wastewater environment and survive WWTP treatment systems, thus managing to escape into the environment via treated wastewater. | 2025 | 40076673 |
| 3253 | 8 | 0.9997 | Metagenome-assembled genomes indicate that antimicrobial resistance genes are highly prevalent among urban bacteria and multidrug and glycopeptide resistances are ubiquitous in most taxa. INTRODUCTION: Every year, millions of deaths are associated with the increased spread of antimicrobial resistance genes (ARGs) in bacteria. With the increasing urbanization of the global population, the spread of ARGs in urban bacteria has become a more severe threat to human health. METHODS: In this study, we used metagenome-assembled genomes (MAGs) recovered from 1,153 urban metagenomes in multiple urban locations to investigate the fate and occurrence of ARGs in urban bacteria. Additionally, we analyzed the occurrence of these ARGs on plasmids and estimated the virulence of the bacterial species. RESULTS: Our results showed that multidrug and glycopeptide ARGs are ubiquitous among urban bacteria. Additionally, we analyzed the deterministic effects of phylogeny on the spread of these ARGs and found ARG classes that have a non-random distribution within the phylogeny of our recovered MAGs. However, few ARGs were found on plasmids and most of the recovered MAGs contained few virulence factors. DISCUSSION: Our results suggest that the observed non-random spreads of ARGs are not due to the transfer of plasmids and that most of the bacteria observed in the study are unlikely to be virulent. Additional research is needed to evaluate whether the ubiquitous and widespread ARG classes will become entirely prevalent among urban bacteria and how they spread among phylogenetically distinct species. | 2023 | 36760505 |
| 3456 | 9 | 0.9997 | Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (bla(TEM), bla(CTX-M-1) group, bla(CTX-M-9) group, bla(OXA-48), bla(VIM), mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered. | 2018 | 29567433 |
| 7325 | 10 | 0.9997 | Profiling the bacterial microbiome diversity and assessing the potential to detect antimicrobial resistance bacteria in wastewater in Kimberley, South Africa. Wastewater treatment plants (WWTPs) are hotspots for pathogens, and can facilitate horizontal gene transfer, potentially releasing harmful genetic material and antimicrobial resistance genes into the environment. Little information exists on the composition and behavior of microbes in WWTPs, especially in developing countries. This study used environmental DNA (eDNA) techniques to examine the microbiome load of wastewater from WWTPs. The DNA was isolated from wastewater samples collected from the treatment trains of three WWTPs in Kimberley, South Africa, and the microbial diversity and composition was compared through 16 S rRNA gene sequencing. The microbes detected were of the Kingdom Bacteria, and of these, 48.27% were successfully identified to genus level. The majority of reads from the combined bacterial data fall within the class Gammaproteobacteria, which is known to adversely impact ecological and human health. Arcobacteraceae constituted 19% of the bacterial reads, which is expected as this family is widespread in aquatic environments. Interestingly, the most abundant bacterial group was Bacteroides, which contain a variety of antibiotic-resistant members. Overall, various antibiotic-resistant taxa were detected in the wastewater, indicating a concerning level of antibiotic resistance within the bacterial community. Therefore, eDNA analysis can be a valuable tool in monitoring and assessing the bacterial microbiome in wastewater, thus providing important information for the optimization and improvement of wastewater treatment systems and mitigate public health risks. | 2024 | 39500921 |
| 3424 | 11 | 0.9997 | Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. In this study, we quantified eleven antibiotic compounds and nine antibiotic resistance genes (ARGs) in water samples collected upstream and downstream of the discharge point from a municipal wastewater treatment plant (WWTP) into the Ter River. Antibiotics were analyzed by liquid chromatography coupled to mass spectrometry, whereas the concentration of ARGs in bacterial, phage and plasmid DNA fractions was determined by real-time PCR to explore their contribution to environmental antibiotic resistance. WWTP discharges resulted in higher concentrations of antibiotic residues as well as ARGs in water samples collected downstream the impact point. Specifically, genes conferring resistance to macrolides (ermB), fluoroquinolones (qnrS) and tetracyclines (tetW) showed significant differences (p<0.05) between upstream and downstream sites in the three DNA fractions (i.e. bacteria, plasmids and phages). Interestingly, genes conferring resistance to β-lactams (bla(TEM), bla(NDM) and bla(KPC)) and glycopeptides (vanA) only showed significant differences (p<0.05) between upstream and downstream sites in phage and plasmid DNA but not in the bacterial DNA fraction. Our results show for the first time the extent to which phages and plasmids contribute to the mobilization of ARGs in an aquatic environment exposed to chronic antibiotic pollution via WWTP discharges. Accordingly, these mobile genetic elements should be included in further studies to get a global view of the spread of antibiotic resistance. | 2017 | 28551539 |
| 3334 | 12 | 0.9997 | Metagenomic profiling of antibiotic resistance genes in Red Sea brine pools. Antibiotic resistance (AR) is an alarming global health concern, causing an annual death rate of more than 35,000 deaths in the US. AR is a natural phenomenon, reported in several pristine environments. In this study, we report AR in pristine Red Sea deep brine pools. Antimicrobial resistance genes (ARGs) were detected for several drug classes with tetracycline and macrolide resistance being the most abundant. As expected, ARGs abundance increased in accordance with the level of human impact with pristine Red Sea samples having the lowest mean ARG level followed by estuary samples, while activated sludge samples showed a significantly higher ARG level. ARG hierarchical clustering grouped drug classes for which resistance was detected in Atlantis II Deep brine pool independent of the rest of the samples. ARG abundance was significantly lower in the Discovery Deep brine pool. A correlation between integrons and ARGs abundance in brine pristine samples could be detected, while insertion sequences and plasmids showed a correlation with ARGs abundance in human-impacted samples not seen in brine pristine samples. This suggests different roles of distinct mobile genetic elements (MGEs) in ARG distribution in pristine versus human-impacted sites. Additionally, we showed the presence of mobile antibiotic resistance genes in the Atlantis II brine pool as evidenced by the co-existence of integrases and plasmid replication proteins on the same contigs harboring predicted multidrug-resistant efflux pumps. This study addresses the role of non-pathogenic environmental bacteria as a silent reservoir for ARGs, and the possible horizontal gene transfer mechanism mediating ARG acquisition. | 2023 | 37061654 |
| 7107 | 13 | 0.9997 | A Comprehensive Study of the Microbiome, Resistome, and Physical and Chemical Characteristics of Chicken Waste from Intensive Farms. The application of chicken waste to farmland could be detrimental to public health. It may contribute to the dissemination of antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from feces and their subsequent entry into the food chain. The present study analyzes the metagenome and resistome of chicken manure and litter obtained from a commercial chicken farm in Poland. ARB were isolated, identified, and screened for antibiogram fingerprints using standard microbiological and molecular methods. The physicochemical properties of the chicken waste were also determined. ARGs, integrons, and mobile genetic elements (MGE) in chicken waste were analyzed using high-throughput SmartChip qPCR. The results confirm the presence of many ARGs, probably located in MGE, which can be transferred to other bacteria. Potentially pathogenic or opportunistic microorganisms and phytopathogens were isolated. More than 50% of the isolated strains were classified as being multi-drug resistant, and the remainder were resistant to at least one antibiotic class; these pose a real risk of entering the groundwater and contaminating the surrounding environment. Our results indicate that while chicken manure can be sufficient sources of the nutrients essential for plant growth, its microbiological aspects make this material highly dangerous to the environment. | 2022 | 36009027 |
| 7292 | 14 | 0.9997 | Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health. | 2023 | 36351483 |
| 3458 | 15 | 0.9997 | MinION Nanopore Sequencing Enables Correlation between Resistome Phenotype and Genotype of Coliform Bacteria in Municipal Sewage. Wastewater treatment plants (WWTPs) functioned as the intersection between the human society and nature environment, are receiving increasingly more attention on risk assessment of the acquisition of environmental antibiotic resistance genes (ARGs) by pathogenetic populations during treatment. However, because of the general lack of robust resistome profiling methods, genotype, and resistance phenotype is still poorly correlated in human pathogens of sewage samples. Here we applied MinION sequencing to quantify the resistance genes of multiple antibiotic resistant (MAR) coliform bacteria, a common indicator for human enteric pathogens in sewage samples. Our pipeline could deliver the results within 30 h from sample collection and the resistome quantification was consistent to that based on the Illumina platform. Additionally, the long nanopore reads not only enabled a simultaneous identification of the carrier populations of ARGs detected, but also facilitated the genome reconstruction of a representative MAR strain, from which we identified an instance of chromosomal integration of environmental resistance gene obtained by plasmid exchange with a porcine pathogen. This study demonstrated the utilization of MinION sequencing in quick monitoring and simultaneous phylogenetic tracking of environmental ARGs to address potential health risk associated with them. | 2017 | 29163399 |
| 3469 | 16 | 0.9997 | Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. The spread of antibiotic resistance among bacterial pathogens is to a large extent mediated by mobile antibiotic resistance genes (ARGs). The prevalence and geographic distribution of several newly discovered ARGs, as well as some clinically important ARGs conferring resistance to last resort antibiotics, are largely unknown. Targeted analysis of wastewater samples could allow estimations of carriage in the population connected to the sewers as well as release to the environment. Here we quantified ARGs conferring resistance to linezolid (optrA and cfr(A)) and colistin (mcr-1, -2, -3, -4 and -5) and the recently discovered gar (aminoglycoside ARG) and sul4 (sulphonamide ARG) in raw hospital and municipal wastewater as well as treated municipal wastewater during five years in a low antibiotic resistance prevalence setting (Gothenburg, Sweden). Additionally, variations in bacterial composition of the wastewaters characterized by 16S rRNA sequencing were related to the variations of the ARGs in an attempt to reveal if the presence of known or suspected bacterial host taxa could explain the presence of the ARGs in wastewater. The mcr-1, mcr-3, mcr-4, mcr-5, sul4 and gar genes were detected regularly in all types of wastewater samples while optrA and cfr(A) were detected only in hospital wastewater. The most abundant genes were mcr-3 and mcr-5, especially in municipal wastewater. The detection of optrA was restricted to a peak during one year. Most of the ARGs correlated with taxa previously described as bacterial hosts and associated with humans. Although some of the tentative hosts may include bacteria also thriving in wastewater environments, detection of the ARGs in the wastewaters could reflect their presence in the gut flora of the contributing populations. If so, they could already today or in the near future hinder treatment of bacterial infections in a setting where they currently are rarely targeted/detected during clinical surveillance. | 2022 | 34748849 |
| 3677 | 17 | 0.9997 | Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. | 2014 | 24637153 |
| 3680 | 18 | 0.9997 | Metagenomic Insights Into the Contribution of Phages to Antibiotic Resistance in Water Samples Related to Swine Feedlot Wastewater Treatment. In this study, we examined the types of antibiotic resistance genes (ARGs) possessed by bacteria and bacteriophages in swine feedlot wastewater before and after treatment using a metagenomics approach. We found that the relative abundance of ARGs in bacterial DNA in all water samples was significantly higher than that in phages DNA (>10.6-fold), and wastewater treatment did not significantly change the relative abundance of bacterial- or phage-associated ARGs. We further detected the distribution and diversity of the different types of ARGs according to the class of antibiotics to which they confer resistance, the tetracycline resistance genes were the most abundant resistance genes and phages were more likely to harbor ATP-binding cassette transporter family and ribosomal protection genes. Moreover, the colistin resistance gene mcr-1 was also detected in the phage population. When assessing the contribution of phages in spreading different groups of ARGs, β-lactamase resistance genes had a relatively high spreading ability even though the abundance was low. These findings possibly indicated that phages not only could serve as important reservoir of ARG but also carry particular ARGs in swine feedlot wastewater, and this phenomenon is independent of the environment. | 2018 | 30459724 |
| 3186 | 19 | 0.9997 | Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Efficient sewage treatment is critical for limiting environmental transmission of antibiotic-resistant bacteria. In many low and middle income countries, however, large proportions of sewage are still released untreated into receiving water bodies. In-depth knowledge of how such discharges of untreated urban waste influences the environmental resistome is largely lacking. Here, we highlight the impact of uncontrolled discharge of partially treated and/or untreated wastewater on the structure of bacterial communities and resistome of sediments collected from Mutha river flowing through Pune city in India. Using shotgun metagenomics, we found a wide array (n = 175) of horizontally transferable antibiotic resistance genes (ARGs) including carbapenemases such as NDM, VIM, KPC, OXA-48 and IMP types. The relative abundance of total ARGs was 30-fold higher in river sediments within the city compared to upstream sites. Forty four ARGs, including the tet(X) gene conferring resistance to tigecycline, OXA-58 and GES type carbapenemases, were significantly more abundant in city sediments, while two ARGs were more common at upstream sites. The recently identified mobile colistin resistance gene mcr-1 was detected only in one of the upstream samples, but not in city samples. In addition to ARGs, higher abundances of various mobile genetic elements were found in city samples, including integron-associated integrases and ISCR transposases, as well as some biocide/metal resistance genes. Virulence toxin genes as well as bacterial genera comprising many pathogens were more abundant here; the genus Acinetobacter, which is often associated with multidrug resistance and nosocomial infections, comprised up to 29% of the 16S rRNA reads, which to our best knowledge is unmatched in any other deeply sequenced metagenome. There was a strong correlation between the abundance of Acinetobacter and the OXA-58 carbapenemase gene. Our study shows that uncontrolled discharge of untreated urban waste can contribute to an overall increase of the abundance and diversity of ARGs in the environment, including those conferring resistance to last-resort antibiotics. | 2017 | 28780361 |