# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3076 | 0 | 1.0000 | Antimicrobial resistance genes (ARGs) in sea surface aerosols over the Atlantic Ocean. The large-scale abundance and distribution of antibiotic resistance genes (ARGs) within the atmosphere remains poorly documented, particularly over oceans. This study explores bacterial loads, diversity, and associated antimicrobial resistance genes in aerosols over the North Atlantic Ocean. Aerosol samples were collected from a ship during a cruise from Brest (France) to Woods Hole (USA) for 24-h periods using a mast-mounted system, with additional one-hour spot samples taken daily and nightly using high-flow rates samplers. The airborne concentrations of bacteria along with 21 ARG subtypes as indicators of key resistance families were monitored using qPCR. These were related to the bacterial diversity obtained from same samples through ribosomal gene amplicon sequencing, and to the geographical origin of the air masses estimated using atmospheric dynamics models. Total ARG concentrations ranged from background concentrations of a few copies to >10(5) copies/m(3) of air. Near coasts, macrolide and tetracycline resistance genes were dominant (up to 93 % and 38 % of the total ARG monitored here, respectively). While sulfonamide resistance genes were also detected further offshore, those related to transposases and β-lactamases were detected only sporadically. The multiple observed correlations between the aforementioned gene concentrations in the air and potential soil-derived microorganisms may be indicative of continental inputs. Conversely, the prevalence of quinolone resistance (qepA) in the air over the open ocean points toward a contribution from marine surfaces, supported by associations between several ARGs and marine microorganisms including cyanobacteria. These may thus act as environmental reservoirs of ARGs, and sources for further environmental spread notably by air means. | 2025 | 41106010 |
| 3213 | 1 | 0.9998 | Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas. Groundwater is an essential public and drinking water supply and its protection is a goal for global policies. Here, we investigated the presence and prevalence of antibiotic residues, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and microbial contamination in groundwater environments at various distances from urban areas. Antibiotic concentrations ranged from below detection limit to 917 ng/L, being trimethoprim, macrolide, and sulfonamide the most abundant antibiotic classes. A total of eleven ARGs (aminoglycoside, β-lactam, chloramphenicol, Macrolide-Lincosamide-Streptogramin B - MLSB, sulfonamide, and tetracycline), one antiseptic resistance gene, and two MGEs were detected by qPCR with relative abundances ranging from 6.61 × 10(-7) to 2.30 × 10(-1) copies/16S rRNA gene copies. ARGs and MGEs were widespread in the investigated groundwater environments, with increased abundances not only in urban, but also in remote areas. Distinct bacterial community profiles were observed, with a higher prevalence of Betaproteobacteria and Bacteroidetes in the less-impacted areas, and that of Firmicutes in the contaminated groundwater. The combined characteristics of increased species diversity, distinct phylogenetic composition, and the possible presence of fecal and/or pathogenic bacteria could indicate different types of contamination. Significant correlations between ARGs, MGEs and specific taxa within the groundwater bacterial community were identified, revealing the potential hosts of resistance types. Although no universal marker gene could be determined, a co-selection of int1, qacEΔ1 and sulI genes, a proxy group for anthropogenic pollution, with the tetC, tetO, tetW resistance genes was identified. As the tet group was observed to follow the pattern of environmental contamination for the groundwater samples investigated in this study, our results strongly support the proposal of this group of genes as an environmental tracer of human impact. Overall, the present study investigated several emerging contaminants in groundwater habitats that may be included in monitoring programs to enable further regulatory and protection measures. | 2018 | 29454283 |
| 3217 | 2 | 0.9998 | Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Antibiotic resistance poses a significant threat to human and animal health worldwide, with farms serving as crucial reservoirs of Antibiotic Resistance Genes (ARGs) and Antibiotic-resistant bacteria. However, the distribution of ARGs in poultry farms and their transmission patterns in the environment remain poorly understood. This study collected samples of aerosol microorganisms, cloacal matter, soil, and vegetables from poultry farms and surrounding environments at three different distances. We used 16S rRNA gene sequencing and HT-qPCR to analyze the characteristics of aerosol microbial communities and the abundance of ARGs. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were dominant in cloacal samples, aerosol samples, and vegetable samples, while Proteobacteria Actinobacteriota and Acidobacteria dominated soil. Pseudomonas was dominant in cloacal samples at the genus level, whereas Fusobacterium was prevalent in soil. The diversity and richness of bacterial communities were more similar between cloacal samples than those observed between either sample type compared with soil. Our results showed that tetracycline and aminoglycoside ARG relative abundance was high across all sample types but significantly increased within feces/air compared to soils/vegetables. Association analysis revealed five potential host genera for ARG/MGE presence among various microbiota populations studied here. Our findings confirm that farms are important sources for the environmental dissemination of pathogens and ARGs. | 2025 | 39689477 |
| 3205 | 3 | 0.9998 | Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Livestock feces with antimicrobial resistant bacteria reaches the farm floor, manure pit, farm land and wider environment by run off and aerosolization. Little research has been done on the role of dust in the spread of antimicrobial resistance (AMR) in farms. Concentrations and potential determinants of antimicrobial resistance genes (ARGs) in farm dust are at present not known. Therefore in this study absolute ARG levels, representing the levels people and animals might be exposed to, and relative abundances of ARGs, representing the levels in the bacterial population, were quantified in airborne farm dust using qPCR. Four ARGs were determined in 947 freshly settled farm dust samples, captured with electrostatic dustfall collectors (EDCs), from 174 poultry (broiler) and 159 pig farms across nine European countries. By using linear mixed modeling, associations with fecal ARG levels, antimicrobial use (AMU) and farm and animal related parameters were determined. Results show similar relative abundances in farm dust as in feces and a significant positive association (ranging between 0.21 and 0.82) between the two reservoirs. AMU in pigs was positively associated with ARG abundances in dust from the same stable. Higher biosecurity standards were associated with lower relative ARG abundances in poultry and higher relative ARG abundances in pigs. Lower absolute ARG levels in dust were driven by, among others, summer season and certain bedding materials for poultry, and lower animal density and summer season for pigs. This study indicates different pathways that contribute to shaping the dust resistome in livestock farms, related to dust generation, or affecting the bacterial microbiome. Farm dust is a large reservoir of ARGs from which transmission to bacteria in other reservoirs can possibly occur. The identified determinants of ARG abundances in farm dust can guide future research and potentially farm management policy. | 2022 | 35033551 |
| 7286 | 4 | 0.9998 | Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River. BACKGROUND/OBJECTIVES: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. METHODS: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. RESULTS: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. CONCLUSIONS: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. | 2025 | 40867992 |
| 7114 | 5 | 0.9997 | Antibiotic Resistance Genes in Freshwater Trout Farms in a Watershed in Chile. Point sources such as wastewater treatment plants, terrestrial agriculture, and aquaculture may release antibiotic residues, antibiotic resistant bacteria, and antibiotic resistance genes (ARGs) into aquatic ecosystems. However, there is a lack of quantitative studies attributing environmental ARG abundance to specific sources. The goal of this study was to evaluate the role of freshwater trout farms in the release and dissemination of ARGs into the environment. Sediment samples upstream and downstream from five rainbow trout farms were collected over time in southern Chile. A microfluidic quantitative polymerase chain reaction approach was used to quantify an ARG array covering different mechanisms of resistance, and data were analyzed using principal component analysis (PCA) and linear mixed regression models. Surveys were also conducted to obtain information about management practices, including antibiotic use, at the farms. Florfenicol and oxytetracycline were used at these farms, although at different rates. A total of 93 samples were analyzed. In the PCA, , , , , (A), (B), (C), (W), and grouped together. A statistically significant increase in abundance of , , , and several genes was found downstream from the farms compared with upstream sites, and retention ponds had the highest ARG abundance at each site. Antibiotic resistance gene levels returned to baseline at an average distance of 132.7 m downstream from the farms. Although results from this study indicate an influence of trout farms on the presence of ARGs in the immediate environment, the extent of their contribution to ARG dissemination is unknown and deserves further investigation. | 2019 | 31589726 |
| 5301 | 6 | 0.9997 | High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. This study analyzed fresh feces from three common bird species that live in urban environments and interact with human communities. Antibiotic resistance genes (ARGs) encoding resistance to three major classes of antibiotics (i.e., tetracyclines, β-lactams, and sulfonamides) and the mobile genetic element integrase gene (intI1) were abundant (up to 10(9), 10(8), 10(9), and 10(10) copies/g dry feces for tetW, bla(TEM), sul1, and intI1, respectively), with relative concentrations surprisingly comparable to that in poultry and livestock that are occasionally fed antibiotics. Biomarkers for opportunistic pathogens were also abundant (up to 10(7) copies/g dry feces) and the dominant isolates (i.e., Enterococcus spp. and Pseudomonas aeruginosa) harbored both ARGs and virulence genes. ARGs in bird feces followed first-order attenuation with half-lives ranging from 1.3 to 11.1 days in impacted soil. Although residual antibiotics were detected in the feces, no significant correlation was observed between fecal antibiotic concentrations and ARG relative abundance. Thus, other unaccounted factors likely contributed selective pressure for ARG maintenance. These findings highlight the contribution of wild urban bird feces to the maintenance and dissemination of ARGs, and the associated health risks. | 2020 | 32663725 |
| 7285 | 7 | 0.9997 | Human Activity Determines the Presence of Integron-Associated and Antibiotic Resistance Genes in Southwestern British Columbia. The dissemination of antibiotic resistant bacteria from anthropogenic sources into the environment poses an emerging public health threat. Antibiotic resistance genes (ARGs) and gene-capturing systems such as integron-associated integrase genes (intI) play a key role in alterations of microbial communities and the spread of antibiotic resistant bacteria into the environment. In order to assess the effect of anthropogenic activities on watersheds in southwestern British Columbia, the presence of putative antibiotic resistance and integrase genes was analyzed in the microbiome of agricultural, urban influenced, and protected watersheds. A metagenomics approach and high-throughput quantitative PCR (HT qPCR) were used to screen for elements of resistance including ARGs and intI. Metagenomic sequencing of bacterial genomic DNA was used to characterize the resistome of microbial communities present in watersheds over a 1-year period. There was a low prevalence of ARGs relative to the microbial population (<1%). Analysis of the metagenomic sequences detected a total of 60 elements of resistance including 46 ARGs, intI1, and groEL/intI1 genes and 12 quaternary ammonium compounds (qac) resistance genes across all watershed locations. The relative abundance and richness of ARGs was found to be highest in agriculture impacted watersheds compared to urban and protected watersheds. A downstream transport pattern was observed in the impacted watersheds (urban and agricultural) during dry months. Similar to other reports, this study found a strong association between intI1 and ARGs (e.g., sul1), an association which may be used as a proxy for anthropogenic activities. Chemical analysis of water samples for three major groups of antibiotics was below the detection limit. However, the high richness and gene copy numbers (GCNs) of ARGs in impacted sites suggest that the effects of effluents on microbial communities are occurring even at low concentrations of antimicrobials in the water column. Antibiotic resistance and integrase genes in a year-long metagenomic study showed that ARGs were driven mainly by environmental factors from anthropogenized sites in agriculture and urban watersheds. Environmental factors such as land-use and water quality parameters accounted for 45% of the variability observed in watershed locations. | 2018 | 29765365 |
| 7113 | 8 | 0.9997 | Stormwater loadings of antibiotic resistance genes in an urban stream. Antibiotic resistance presents a critical public health challenge and the transmission of antibiotic resistance via environmental pathways continues to gain attention. Factors driving the spread of antibiotic resistance genes (ARGs) in surface water and sources of ARGs in urban stormwater have not been well-characterized. In this study, five ARGs (sul1, sul2, tet(O), tet(W), and erm(F)) were quantified throughout the duration of three storm runoff events in an urban inland stream. Storm loads of all five ARGs were significantly greater than during equivalent background periods. Neither fecal indicator bacteria measured (E. coli or enterococci) was significantly correlated with sul1, sul2, or erm(F), regardless of whether ARG concentration was absolute or normalized to 16S rRNA levels. Both E. coli and enterococci were correlated with the tetracycline resistance genes, tet(O) and tet(W). Next-generation shotgun metagenomic sequencing was conducted to more thoroughly characterize the resistome (i.e., full complement of ARGs) and profile the occurrence of all ARGs described in current databases in storm runoff in order to inform future watershed monitoring and management. Between 37 and 121 different ARGs were detected in each stream sample, though the ARG profiles differed among storms. This study establishes that storm-driven transport of ARGs comprises a considerable fraction of overall downstream loadings and broadly characterizes the urban stormwater resistome to identify potential marker ARGs indicative of impact. | 2017 | 28662396 |
| 3218 | 9 | 0.9997 | Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. The accelerating occurrence and environmental dissemination of bacteria, gas pollutants and antibiotic resistance genes (ARGs) in aerosols of poultry farms have become emerging environmental issues due to their potential threat to animals, workers, and the communities located near such farms. Here, aerosol samples were gathered from inside and outside of the chicken house in winter with a transportable high-flow bioaerosol sampler. Then, 16S rRNA gene amplicon sequencing was used to categorize the bacteria in air samples, and the abundance of 12 ARG subtypes was researched via the real-time quantitative polymerase chain reaction (qPCR). Results indicated that the bacterial richness and diversity and total absolute abundance of ARGs were similar in the bioaerosols from indoor and downwind site of the poultry farm. The zoonotic pathogens, Staphylococcus and Corynebacterium, were detected both inside and outside of the chicken house, and the four most abundant target genes were bla(TEM), tetQ, ermB and sul1 in aerosols. Moreover, the correlation between the bacterial communities and environmental factors, such as NH(3) and H(2)S concentrations, wind speed, temperature and relative humidity, was analyzed. The result revealed that the indoor bacteria community was positively associated with temperature and concentrations of air pollutants (NH(3) and H(2)S), and could spread from confinement buildings to the ambient atmosphere through wind. In addition, the network analysis result showed that the airborne bacteria might significantly contribute in shaping the ARGs' profiles in bioaerosol from inside and outside of the poultry house. Overall, our results revealed the airborne bacterial communities and their associated influencing factors in the micro-environment (inside of the chicken house and nearby the boundary of the farm), and brought a new perspective for studying the gas pollutants and bioaerosol from poultry farms in winter. | 2022 | 35850323 |
| 7284 | 10 | 0.9997 | Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. | 2015 | 25913323 |
| 7115 | 11 | 0.9997 | Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L(-1). Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L(-1) to μg L(-1). Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 10(2) to 5.6 × 10(6) gene copies L(-1) water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality. | 2023 | 36208750 |
| 3204 | 12 | 0.9997 | Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health. | 2022 | 34673316 |
| 7173 | 13 | 0.9997 | Animal farms are hot spots for airborne antimicrobial resistance. Animal farms are known reservoirs for environmental antimicrobial resistance (AMR). However, knowledge of AMR burden in the air around animal farms remains disproportionately limited. In this study, we characterized the airborne AMR based on the quantitative information of 30 antimicrobial resistance genes (ARGs), four mobile genetic elements (MGEs), and four human pathogenic bacteria (HPBs) involving four animal species from 20 farms. By comparing these genes with those in animal feces, the distinguishing features of airborne AMR were revealed, which included high enrichment of ARGs and their potential mobility to host HPBs. We found that depending on the antimicrobial class, the mean concentration of airborne ARGs in the animal farms ranged from 10(2) to 10(4) copies/m(3) and was accompanied by a considerable intensity of MGEs and HPBs (approximately 10(3) copies/m(3)). Although significant correlations were observed between the ARGs and bacterial communities of air and fecal samples, the abundance of target genes was generally high in fine inhalable particles (PM2.5), with an enrichment ratio of up to 10(2) in swine and cattle farms. The potential transferability of airborne ARGs was universally strengthened, embodied by a pronounced co-occurrence of ARGs-MGEs in air compared with that in feces. Exposure analysis showed that animal farmworkers may inhale approximately 10(4) copies of human pathogenic bacteria-associated genera per day potentially carrying highly transferable ARGs, including multidrug resistant Staphylococcus aureus. Moreover, PM2.5 inhalation posed higher human daily intake burdens of some ARGs than those associated with drinking water intake. Overall, our findings highlight the severity of animal-related airborne AMR and the subsequent inhalation exposure, thus improving our understanding of the airborne flow of AMR genes from animals to humans. These findings could help develop strategies to mitigate the human exposure and dissemination of ARGs across different media. | 2022 | 35985594 |
| 7288 | 14 | 0.9997 | Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are worldwide considered as emerging contaminants of large interest, and a primary threat to human health. It is becoming clear that the environment plays a central role in the transmission, spread, and evolution of antibiotic resistance. Although marine systems have been largely investigated, only a few studies have considered the presence of ARGs in meso- and bathypelagic waters. To date, no molecular based studies have yet been made to investigate the occurrence of ARGs in the Black Sea, the largest meromictic basin in the world, receiving water from a number of important European rivers and their residues of anthropogenic activities in permanently stratified mesopelagic water masses. In this study, we determined the presence and the abundance of five ARGs (bla(CTXM), ermB, qnrS, sul2, tetA) and of the heavy metal resistance gene (HMRG) czcA, in different sampling sites in the eastern and western Black Sea, at several depths (up to 1000 m) and various distances from the shoreline. Three ARGs (bla(CTXM), sul2, and tetA) and czcA were present in at least 43% of the analysed samples, whereas ermB and qnrS were never detected. In particular, sul2 abundances increased significantly in coastal location, whereas tetA increased with sampling depth. These findings point out the Black Sea as a source of ARGs and HMRGs distributed along the whole water column. | 2020 | 32919124 |
| 7291 | 15 | 0.9997 | Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. | 2015 | 25933054 |
| 3219 | 16 | 0.9997 | Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. | 2016 | 27503629 |
| 7293 | 17 | 0.9997 | Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. The transmission routes for antibiotic resistance genes (ARGs) and microbiota between humans and water environments is poorly characterized. Here, we used high-throughput qPCR analyses and 16S rRNA gene sequencing to examine the occurrence and abundance of antibiotic resistance genes and microbiota in both healthy humans and associated water environments from a Chinese village. Humans carried the most diverse assemblage of ARGs, with 234 different ARGs being detected. The total abundance of ARGs in feces, on skin, and in the effluent from domestic sewage treatment systems were approximately 23, 2, and 7 times higher than their abundance in river samples. In total, 53 ARGs and 28 bacteria genera that were present in human feces could also be found in the influent and effluent of rural sewage treatment systems, and also downstream of the effluent release point. We identified the bacterial taxa that showed a significant association with ARGs (P < 0.01, r > 0.8) by network analysis, supporting the idea that these bacteria could carry some ARGs and transfer between humans and the environment. Analysis of ARGs and microbiota in humans and in water environments helps to define the transmission routes and dynamics of antibiotic resistance within these environments. This study highlights human contribution to the load of ARGs into the environment and suggests means to prevent such dissemination. | 2018 | 30420129 |
| 3216 | 18 | 0.9997 | Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols. | 2023 | 37119673 |
| 5365 | 19 | 0.9997 | Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., bla(NDM)), 3rd and 4th generation cephalosporins (i.e., bla(CMY-2)), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role. | 2024 | 39334983 |