# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3056 | 0 | 1.0000 | Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7. | 1992 | 1482138 |
| 3045 | 1 | 0.9988 | Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. The relationship between sulfonamide resistance genes carried on different plasmids was investigated by restriction enzyme analysis and DNA-DNA hybridization. The results showed that sulfonamide resistance mediated by different plasmids is determined by the production of at least two different types of drug-resistant dihydropteroate synthase. Plasmids pGS01, pGS02, and R22259, found in bacteria isolated from patients in Swedish hospitals, contained identical sulfonamide resistance genes, which were also identical to those of plasmids R1, R100, R6, and R388. These latter plasmids, which have been well studied in different laboratories, were originally from clinical isolates from different parts of the world. Two other clinically isolated plasmids, pGS04 and pGS05, were shown to contain sulfonamide resistance determinants of a completely different type. | 1983 | 6298179 |
| 3046 | 2 | 0.9987 | Presence of STRA-STRB linked streptomycin-resistance genes in clinical isolate of Escherichia coil 2418. The streptomycin resistance of Escherichia coli 2418 strain has been shown to be associated with a 1.2-kb DNA fragment found in the naturally occurring plasmid R2418S. Here, nucleotide sequence analysis of the 1.2-kb DNA fragment revealed the presence of the strB gene which is located immediately downstream of the strA gene. Both sequences are identical to those of strA and strB genes in plasmid RSF1010. Thus, the observed resistance in the clinical isolate is due to the presence of strA-strB genes encoding streptomycin-modifying enzymes. The sequence downstream of strB gene showed a perfect homology with that of RSF1010. In addition, it contained the right inverted repeat of the transposon Tn5393 that has been suggested to be a relic of this transposon found in DNA plasmids isolated from human- and animal-associated bacteria. | 2010 | 21598829 |
| 1778 | 3 | 0.9987 | Four novel resistance integron gene-cassette occurrences in bacterial isolates from zhenjiang, china. Integrons, which are widely distributed among bacteria and are strongly associated with resistance, are specialized genetic elements that are capable of capturing, integrating, and mobilizing gene cassette. In this work, we investigated classes 1, 2, and 3 integrons associated integrases genes in 365 bacteria isolates, amplified and analyzed the structure of class 1 integron, detected 8 resistant gene cassettes [dfr17, aadA5, aadA1, aadA2, dhfrI, aadB, aac(6')-II, and pse-I], and found four novel gene-cassette arrays. We also found that commensal bacteria in the common microenvironment had the same integron gene cassette, which provided direct evidence that integron was an important horizontal transmission element. | 2009 | 19365688 |
| 3559 | 4 | 0.9987 | Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations. | 2018 | 28642992 |
| 4605 | 5 | 0.9986 | Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine. The resistance genes and their surroundings on three self-transmissible plasmids found in Escherichia coli of the enteric normal flora of healthy pigs have been characterized. The resistance elements found are similar to those commonly found in clinical isolates, like the transposon Tn1721 including the Tet A tetracycline resistance determinant, Tn10 with the Tet B determinant, Tn21 including a class 1 integron with the aadA1a cassette inserted, sulII encoding sulfonamide resistance, and the strA-strB genes responsible for streptomycin resistance. The plasmids were able to mobilize into various recipients, including swine pathogens, zoonotic bacteria, and commensals when conjugation experiments were carried out. Transfer of plasmids did not require optimal conditions concerning nutrition and temperature as plasmids were transferred in 0.9% saline at room temperature, suggesting that in vivo transfer might be possible. This study shows that transferable resistance elements appearing in normal flora bacteria from animals are similar to those commonly found in clinical isolates of human origin. The results indicate a probable communication between pathogens and the normal flora with respect to exchange of resistance factors. | 2001 | 11442346 |
| 4528 | 6 | 0.9985 | Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae. As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus. | 2017 | 28923604 |
| 2073 | 7 | 0.9985 | Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile. Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6')-Ib-cr, was identical to aac(6')-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6')-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12. | 2014 | 24760167 |
| 4949 | 8 | 0.9985 | Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Conjugative plasmids were common in enterobacteria isolated before the medical use of antibiotics. Plasmid F of Escherichia coli K-12 was one example and we identified others in over 20% of a collection of strains isolated between 1917 and 1954, the Murray collection. In the past 25 years, conjugative plasmids encoding antibiotic resistances have become common in bacteria of the same genera as those of the Murray Collection--Salmonella, Shigella, Klebsiella, Proteus, Escherichia. The present study was made to show whether the 'pre-antibiotic' plasmids belonged to the same groups, as defined by incompatibility tests (Inc groups), as modern R plasmids. Of 84 such plasmids established in E. coli K-12, none with antibiotic resistance determinants, 65 belonged to the same groups as present resistance (R) plasmids. Thus the remarkable way in which medically important bacteria have acquired antibiotic resistance in the past 25 years seems to have been by the insertion of new genes into existing plasmids rather than by the spread of previously rare plasmids. | 1983 | 6316165 |
| 3041 | 9 | 0.9985 | pCERC1, a small, globally disseminated plasmid carrying the dfrA14 cassette in the strA gene of the sul2-strA-strB gene cluster. Commensal Escherichia coli from healthy adult humans were screened for antibiotic resistance genes. Two unrelated strains contained the sul2 sulphonamide resistance gene and strAB streptomyicn resistance genes with the dfrA14 trimethoprim resistance gene cassette in the strA gene and conferred resistance to trimethoprim and sulphamethoxazole. A 6.8 kb plasmid, pCERC1, that contains these resistance genes was recovered and sequenced. Deletions were constructed, and the pCERC1 replication region was confined to a 1 kb segment carrying genes for RNAs that are closely related to the ColE1 replication initiation RNAs. Polymerase chain reaction assays, developed to detect the sul2-strA-strB gene cluster in this context, identified a streptomycin and sulphonamide resistance plasmid, pCERC2, identical to pCERC1 without the dfrA14 cassette in two further E. coli isolates. Bioinformatic analysis revealed plasmids similar to pCERC1 and two more members of this family. One, the probable progenitor, carries only the sul2 gene adjacent to the small mobile element CR2. The other has a variant resistance gene cluster that has evolved from pCERC2 via acquisition of the tet(A) tetracycline resistance determinant. pCERC1 and pCERC2 have been detected in many countries, indicating a global distribution and appear to have been circulating in Gram-negative bacteria for more than 25 years. | 2012 | 22416992 |
| 1771 | 10 | 0.9985 | Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment. | 2003 | 19719593 |
| 4527 | 11 | 0.9985 | Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus. | 2017 | 28390978 |
| 5651 | 12 | 0.9985 | Class 1 integron causes vulnerability to formaldehyde in Escherichia coli. In this study, the relationships of integron 1 element, formaldehyde dehydrogenase, and orfF genes with the level of formaldehyde resistance of isolated E. coli were investigated. E. coli bacteria were isolated from apparently healthy and colibacillosis-affected broilers of Fars Province, Iran. Formaldehyde resistance level and the presence of genetic markers were measured using MIC, and PCR tests, respectively. The prevalence of integron 1 element, orfF, and formaldehyde dehydrogenase genes in E. coli isolates were 61%, 8%, and 94%, respectively. In addition, according to our cut off definition, 15% and 85% of isolates were resistant and sensitive to formaldehyde, respectively. None of the genes had a statistically significant relationship with the formaldehyde resistance; however, the isolates containing integron 1 were significantly more sensitive to formaldehyde in the MIC test than those without integron 1. Integron 1 gene cassette could carry some bacterial surface proteins and porins with different roles in bacterial cells. Formaldehyde could also interfere with the protein functions by alkylating and cross-linking, and this compound would affect bacterial cell surface proteins in advance. Through an increase in the cell surface proteins, the presence of integron 1 gene cassette might make E. coli more sensitive to formaldehyde. As integron 1 was always involved in increasing bacterial resistance to antibiotics and disinfectants such as QACs, this is the first report of bacterial induction of sensitivity to a disinfectant through integron 1. Finally, integron 1 does not always add an advantage to E. coli bacteria, and it could be assumed as a cause of vulnerability to formaldehyde. | 2021 | 34148112 |
| 5851 | 13 | 0.9985 | Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates. | 1998 | 10932734 |
| 4499 | 14 | 0.9985 | Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material. | 1987 | 3032095 |
| 3043 | 15 | 0.9985 | The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family. | 1984 | 6328217 |
| 4604 | 16 | 0.9985 | Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Gene transfer within bacterial communities has been recognized as a major contributor in the recent evolution of antibiotic resistance on a global scale. The linked strA-strB genes, which encode streptomycin-inactivating enzymes, are distributed worldwide and confer streptomycin resistance in at least 17 genera of gram-negative bacteria. Nucleotide sequence analyses suggest that strA-strB have been recently disseminated. In bacterial isolates from humans and animals, strA-strB are often linked with the suIII sulfonamide-resistance gene and are encoded on broad-host-range nonconjugative plasmids. In bacterial isolates from plants, strA-strB are encoded on the Tn3-type transposon Tn5393 which is generally borne on conjugative plasmids. The wide distribution of the strA-strB genes in the environment suggests that gene transfer events between human, animal, and plant-associated bacteria have occurred. Although the usage of streptomycin in clinical medicine and animal husbandry has diminished, the persistence of strA-strB in bacterial populations implies that factors other than direct antibiotic selection are involved in maintenance of these genes. | 1996 | 9147689 |
| 3039 | 17 | 0.9985 | Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. We report the linkage of the strA-strB streptomycin-resistance genes with Class 1 integron sequences on pSTR1, a 75-kb multiple antibiotic-resistance plasmid from Shigella flexneri. strA-strB had previously been detected only within Tn 5393, a Tn 3-family transposon, and on small nonconjugative broad-host-range plasmids such as RSF1010. The geographic range of Tn 5393 was also extended to Pseudomonas spp. isolated from apple trees in New Zealand and soil in the USA. Comparative sequence analyses indicated that strA-strB from Tn 5393 and nonconjugative plasmids constitute distinct recent lineages with strA-strB from pSTR1 intermediate between the other two. The carriage of strA-strB within an integron, a transposon, and on broad-host-range plasmids has facilitated the world-wide dissemination of this determinant among at least 21 bacterial genera. | 2002 | 12029529 |
| 4465 | 18 | 0.9985 | Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. In contrast to what has been observed for many other antibiotic resistance mechanisms, there are only two known genes encoding plasmid-borne sulfonamide resistance. Both genes, sulI and sulII, encode a drug-resistant dihydropteroate synthase enzyme. In members of the family Enterobacteriaceae isolated from several worldwide sources, plasmid-mediated resistance to sulfonamides could be identified by colony hybridization as being encoded by sulI, sulII, or both. The sulI gene was in all cases found to be located in the newly defined, mobile genetic element, recently named an integron, which has been shown to contain a site-specific recombination system for the integration of various antibiotic resistance genes. The sulII gene was almost exclusively found as part of a variable resistance region on small, nonconjugative plasmids. Colony hybridization to an intragenic probe, restriction enzyme digestion, and nucleotide sequence analysis of small plasmids indicated that the sulII gene and contiguous sequences represent an independently occurring region disseminated in the bacterial population. The sulII resistance region was bordered by direct repeats, which in some plasmids were totally or partially deleted. The prevalence of sulI and sulII could thus be accounted for by their stable integration in transposons and in plasmids that are widely disseminated among gram-negative bacteria. | 1991 | 1952855 |
| 2014 | 19 | 0.9985 | Class 1 and class 2 integrons in multidrug-resistant gram-negative bacteria isolated from the Salmon River, British Columbia. Using an enrichment protocol, we isolated 16 gram-negative, multidrug-resistant strains of known or opportunistic bacterial pathogens from the Salmon River in south-central British Columbia from 2005 to 2009, and investigated the genetic basis of their resistance to a variety of antibiotics. Of the 16 strains, 13 carried class 1 integrons and three carried class 2 integrons. Genes found in cassettes associated with the integrons included those for dihydrofolate reductases (dfrA1, dfrA12, dfrA17, and dfrB7), aminoglycoside adenyltransferases (aadA1, aadA2, aadA5, and aadB), streptothricin acetyltransferase (sat), and hypothetical proteins (orfF and orfC). A new gene cassette of unknown function, orf1, was discovered between dfrA1 and aadA5 in Escherichia sp. Other genes for resistance to tetracycline, chloramphenicol, streptomycin, and kanamycin (tetA, tetB, tetD; catA; strA-strB; and aphA1-Iab, respectively) were outside the integrons. Several of these resistance determinants were transferable by conjugation. The detection of organisms and resistance determinants normally associated with clinical settings attest to their widespread dispersal and suggest that regular monitoring of their presence in aquatic habitats should become a part of the overall effort to understand the epidemiology of antibiotic resistance genes in bacteria. | 2011 | 21627486 |