# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 304 | 0 | 1.0000 | Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism. Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a beta-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA--H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the CarF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel beta-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure 'self-resistance' in the Erwinia carbapenem producer. | 1997 | 9402024 |
| 262 | 1 | 0.9996 | Genome scanning in Haemophilus influenzae for identification of essential genes. We have developed a method for identifying essential genes by using an in vitro transposition system, with a small (975 bp) insertional element containing an antibiotic resistance cassette, and mapping these inserts relative to the deduced open reading frames of Haemophilus influenzae by PCR and Southern analysis. Putative essential genes are identified by two methods: mutation exclusion or zero time analysis. Mutation exclusion consists of growing an insertional library and identifying open reading frames that do not contain insertional elements: in a growing population of bacteria, insertions in essential genes are excluded. Zero time analysis consists of monitoring the fate of individual insertions after transformation in a growing culture: the loss of inserts in essential genes is observed over time. Both methods of analysis permit the identification of genes required for bacterial survival. Details of the mutant library construction and the mapping strategy, examples of mutant exclusion, and zero time analysis are presented. | 1999 | 10438768 |
| 174 | 2 | 0.9996 | Resistance to Arsenite and Arsenate in Saccharomyces cerevisiae Arises through the Subtelomeric Expansion of a Cluster of Yeast Genes. Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated. | 2022 | 35805774 |
| 6324 | 3 | 0.9996 | Genetic and biochemical basis of tetracycline resistance. Properties of several, well characterized, tetracycline resistance determinants were compared. The determinants in Tn1721 and Tn10 (both from Gram-negative bacteria) each contain two genes; one encodes a repressor that regulates both its own transcription and that of a membrane protein that confers resistance by promoting efflux of the drug. Determinants from Gram-positive bacteria also encode efflux proteins, but expression of resistance is probably regulated by translational attenuation. The likely tetracycline binding site (a common dipeptide) in each efflux protein was predicted. The presence of the common binding site is consistent with the ability of an efflux protein originating in Bacillus species to be expressed in Escherichia coli. | 1986 | 3542941 |
| 6325 | 4 | 0.9996 | Repressed multidrug resistance genes in Streptomyces lividans. Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes. | 2003 | 12937892 |
| 6316 | 5 | 0.9996 | A novel type of colistin resistance genes selected from random sequence space. Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura. | 2021 | 33411736 |
| 292 | 6 | 0.9996 | Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Tetracycline-resistance determinants encoding active efflux of the drug are widely distributed in gram-negative bacteria and unique with respect to genetic organization and regulation of expression. Each determinant consists of two genes called tetA and tetR, which are oriented with divergent polarity, and between them is a central regulatory region with overlapping promoters and operators. The amino acid sequences of the encoded proteins are 43-78% identical. The resistance protein TetA is a tetracycline/metal-proton antiporter located in the cytoplasmic membrane, while the regulatory protein TetR is a tetracycline inducible repressor. TetR binds via a helix-turn-helix motif to the two tet operators, resulting in repression of both genes. A detailed model of the repressor-operator complex has been proposed on the basis of biochemical and genetic data. The tet genes are differentially regulated so that repressor synthesis can occur before the resistance protein is expressed. This has been demonstrated for the Tn10-encoded tet genes and may be a common property of all tet determinants, as suggested by the similar locations of operators with respect to promoters. Induction is mediated by a tetracycline-metal complex and requires only nanomolar concentrations of the drug. This is the most sensitive effector-inducible system of transcriptional regulation known to date. The crystal structure of the TetR-tetracycline/metal complex shows the Tet repressor in the induced, non-DNA binding conformation. The structural interpretation of many noninducible TetR mutants has offered insight into the conformational changes associated with the switch between inducing and repressing structures of TetR. Tc is buried in the core of TetR, where it is held in place by multiple contacts to the protein. | 1994 | 7826010 |
| 8455 | 7 | 0.9996 | RT-PCR: characterization of long multi-gene operons and multiple transcript gene clusters in bacteria. Reverse transcription (RT)-PCR is a valuable tool widely used for analysis of gene expression. In bacteria, RT-PCR is helpful beyond standard protocols of northern blot RNA/DNA hybridization (to identify transcripts) and primer extension (to locate their start points), as these methods have been difficult with transcripts that are low in abundance or unstable, similar to long multi-gene operons. In this report, RT-PCR is adapted to analyze transcripts that form long multi-gene operons--where they start and where they stop. The transcripts can also be semiquantitated to follow the expression of genes under different growth conditions. Examples using RT-PCR are presented with two different multi-gene systems for metal cation resistance to silver and mercury ions. The silver resistance system [9 open reading frames (ORFs); 12.5 kb] is shown by RT-PCR to synthesize three nonoverlapping messenger RNAs that are transcribed divergently. In the mercury resistance system (8 ORFs; 6.3 kb), all the genes are transcribed in the same orientation, and two promoter sites produce overlapping transcripts. For RT-PCR, reverse transcriptase enzyme is used to synthesize first-strand cDNA that is used as a template for PCR amplification of single-gene products, from the beginning, middle or end of long multi-gene, multi-transcript gene clusters. | 1999 | 10572645 |
| 6318 | 8 | 0.9995 | Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Phenotypic differences among closely related bacteria have been largely ascribed to species-specific genes, such as those residing in pathogenicity islands. However, we now report that the differential regulation of homologous genes is the mechanism responsible for the divergence of the enteric bacteria Salmonella enterica and Escherichia coli in their ability to make LPS modifications mediating resistance to the antibiotic polymyxin B. In S. enterica serovar Typhimurium, the PmrA/PmrB two-component system governing polymyxin B resistance is induced in low Mg(2+) in a process that requires the PmrD protein and by Fe(3+) in a PmrD-independent fashion. We establish that E. coli K-12 induces PmrA-activated gene transcription and polymyxin B resistance in response to Fe(3+), but that it is blind to the low Mg(2+) signal. The highly divergent PmrD protein is responsible for this phenotype as replacement of the E. coli pmrD gene by its Salmonella counterpart resulted in an E. coli strain that transcribed PmrA-activated genes and displayed polymyxin B resistance under the same conditions as Salmonella. Molecular analysis of natural isolates of E. coli and Salmonella revealed that the PmrD proteins are conserved within each genus and that selection might have driven the divergence between the Salmonella and E. coli PmrD proteins. Investigation of PmrD function demonstrated statistically different distributions for the Salmonella and E. coli isolates in PmrD-dependent transcription occurring in low Mg(2+). Our results suggest that the differential regulation of conserved genes may have ecological consequences, determining the range of niches a microorganism can occupy. | 2004 | 15569938 |
| 260 | 9 | 0.9995 | Improved antibiotic resistance gene cassette for marker exchange mutagenesis in Ralstonia solanacearum and Burkholderia species. Marker exchange mutagenesis is a fundamental approach to understanding gene function at a molecular level in bacteria. New plasmids carrying a kanamycin resistance gene or a trimethoprim resistance gene were constructed to provide antibiotic resistance cassettes for marker exchange mutagenesis in Ralstonia solanacearum and many antibiotic-resistant Burkholderia spp. Insertion sequences present in the flanking sequences of the antibiotic resistance cassette were removed to prevent aberrant gene replacement and polar mutation during mutagenesis in wild-type bacteria. Plasmids provided in this study would be convenient for use in gene cassettes for gene replacement in other Gram-negative bacteria. | 2011 | 21538255 |
| 261 | 10 | 0.9995 | Suicide vectors for antibiotic marker exchange and rapid generation of multiple knockout mutants by allelic exchange in Gram-negative bacteria. Allelic exchange is frequently used in bacteria to generate knockout mutants in genes of interest, to carry out phenotypic analysis and learn about their function. Frequently, understanding of gene function in complex processes such as pathogenesis requires the generation of multiple mutant strains. In Pseudomonads and other non-Enterobacteriaceae, this is a time-consuming and laborious process based on the use of suicide vectors and allelic exchange of the appropriate mutant version of each gene, disrupted by a different antibiotic marker. This often implies the generation of a series of mutants for each gene, each disrupted by a different antibiotic marker, in order to obtain all possible double or multiple mutant combinations. In this work, we have modified this method by developing a set of 3 plasmid derivatives from the previously described suicide vector for allelic exchange, pKAS32, to make antibiotic marker exchange easier and thus accelerate the entire process. Briefly, the construction of each single gene knockout mutant is carried out by allelic exchange of the chromosomal gene with a mutant allele disrupted by the insertion of a kanamycin resistance cassette. When a double mutant strain is required, antibiotic marker exchange is performed in either one of the single mutants, using any of the three plasmid derivatives that carry the kanamycin resistance gene disrupted by either a chloramphenicol, gentamycin, or streptomycin resistance cassette. The single mutant strain, carrying now an antibiotic resistance marker other than kanamycin, can be used to introduce a second mutation using the original plasmid constructs, to generate a double mutant. The process can be repeated sequentially to generate multiple mutants. We have validated this method by generating strains carrying different combinations of mutations in genes encoding different transcriptional regulators of the Hrp type III secretion system in Pseudomonas syringae. We have also tested the genetic organisation and stability of the resulting mutant strains during growth in laboratory conditions as well as in planta. | 2006 | 16750581 |
| 8387 | 11 | 0.9995 | Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. | 2017 | 28189581 |
| 6312 | 12 | 0.9995 | D-serine deaminase is a stringent selective marker in genetic crosses. The presence of the locus for D-serine deaminase (dsd) renders bacteria resistant to growth inhibition by D-serine and enables them to grow with D-serine as the sole nitrogen source. The two properties permit stringent selection in genetic crosses and make the D-serine deaminase gene an excellent marker, especially in the construction of strains for which the use of antibiotic resistance genes as selective markers is not allowed. | 1995 | 7814336 |
| 6308 | 13 | 0.9995 | A shotgun antisense approach to the identification of novel essential genes in Pseudomonas aeruginosa. BACKGROUND: Antibiotics in current use target a surprisingly small number of cellular functions: cell wall, DNA, RNA, and protein biosynthesis. Targeting of novel essential pathways is expected to play an important role in the discovery of new antibacterial agents against bacterial pathogens, such as Pseudomonas aeruginosa, that are difficult to control because of their ability to develop resistance, often multiple, to all current classes of clinical antibiotics. RESULTS: We aimed to identify novel essential genes in P. aeruginosa by shotgun antisense screening. This technique was developed in Staphylococcus aureus and, following a period of limited success in Gram-negative bacteria, has recently been used effectively in Escherichia coli. To also target low expressed essential genes, we included some variant steps that were expected to overcome the non-stringent regulation of the promoter carried by the expression vector used for the shotgun antisense libraries. Our antisense screenings identified 33 growth-impairing single-locus genomic inserts that allowed us to generate a list of 28 "essential-for-growth" genes: five were "classical" essential genes involved in DNA replication, transcription, translation, and cell division; seven were already reported as essential in other bacteria; and 16 were "novel" essential genes with no homologs reported to have an essential role in other bacterial species. Interestingly, the essential genes in our panel were suggested to take part in a broader range of cellular functions than those currently targeted by extant antibiotics, namely protein secretion, biosynthesis of cofactors, prosthetic groups and carriers, energy metabolism, central intermediary metabolism, transport of small molecules, translation, post-translational modification, non-ribosomal peptide synthesis, lipopolysaccharide synthesis/modification, and transcription regulation. This study also identified 43 growth-impairing inserts carrying multiple loci targeting 105 genes, of which 25 have homologs reported as essential in other bacteria. Finally, four multigenic growth-impairing inserts belonged to operons that have never been reported to play an essential role. CONCLUSIONS: For the first time in P. aeruginosa, we applied regulated antisense RNA expression and showed the feasibility of this technology for the identification of novel essential genes. | 2014 | 24499134 |
| 4436 | 14 | 0.9995 | Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. A plasmid-borne transposon encodes enzymes and regulator proteins that confer resistance of enterococcal bacteria to the antibiotic vancomycin. Purification and characterization of individual proteins encoded by this operon has helped to elucidate the molecular basis of vancomycin resistance. This new understanding provides opportunities for intervention to reverse resistance. | 1996 | 8807824 |
| 442 | 15 | 0.9995 | Mercuric reductase in environmental gram-positive bacteria sensitive to mercury. According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria. | 1992 | 1427009 |
| 6320 | 16 | 0.9995 | Identification of the Extracytoplasmic Function σ Factor σ(P) Regulon in Bacillus thuringiensis. Bacillus thuringiensis and other members of the Bacillus cereus family are resistant to many β-lactams. Resistance is dependent upon the extracytoplasmic function sigma factor σ(P). We used label-free quantitative proteomics to identify proteins whose expression was dependent upon σ(P). We compared the protein profiles of strains which either lacked σ(P) or overexpressed σ(P). We identified 8 members of the σ(P) regulon which included four β-lactamases as well as three penicillin-binding proteins (PBPs). Using transcriptional reporters, we confirmed that these genes are induced by β-lactams in a σ(P)-dependent manner. These genes were deleted individually or in various combinations to determine their role in resistance to a subset of β-lactams, including ampicillin, methicillin, cephalexin, and cephalothin. We found that different combinations of β-lactamases and PBPs are involved in resistance to different β-lactams. Our data show that B. thuringiensis utilizes a suite of enzymes to protect itself from β-lactam antibiotics. IMPORTANCE Antimicrobial resistance is major concern for public health. β-Lactams remain an important treatment option for many diseases. However, the spread of β-lactam resistance continues to rise. Many pathogens acquire antibiotic resistance from environmental bacteria. Thus, understanding β-lactam resistance in environmental strains may provide insights into additional mechanisms of antibiotic resistance. Here, we describe how a single regulatory system, σ(P), in B. thuringiensis controls expression of multiple genes involved in resistance to β-lactams. Our findings indicate that some of these genes are partially redundant. Our data also suggest that the large number of genes controlled by σ(P) results in increased resistance to a wider range of β-lactam classes than any single gene could provide. | 2022 | 35080471 |
| 263 | 17 | 0.9995 | Selection and characterization of a promoter for expression of single-copy recombinant genes in Gram-positive bacteria. BACKGROUND: In the past ten years there has been a growing interest in engineering Gram-positive bacteria for biotechnological applications, including vaccine delivery and production of recombinant proteins. Usually, bacteria are manipulated using plasmid expression vectors. The major limitation of this approach is due to the fact that recombinant plasmids are often lost from the bacterial culture upon removal of antibiotic selection. We have developed a genetic system based on suicide vectors on conjugative transposons allowing stable integration of recombinant DNA into the chromosome of transformable and non-transformable Gram-positive bacteria. RESULTS: The aim of this work was to select a strong chromosomal promoter from Streptococcus gordonii to improve this genetic system making it suitable for expression of single-copy recombinant genes. To achieve this task, a promoterless gene encoding a chloramphenicol acetyltransferase (cat), was randomly integrated into the S. gordonii chromosome and transformants were selected for chloramphenicol resistance. Three out of eighteen chloramphenicol resistant transformants selected exhibited 100% stability of the phenotype and only one of them, GP215, carried the cat gene integrated as a single copy. A DNA fragment of 600 base pairs exhibiting promoter activity was isolated from GP215 and sequenced. The 5' end of its corresponding mRNA was determined by primer extention analysis and the putative -10 and a -35 regions were identified. To study the possibility of using this promoter (PP) for single copy heterologous gene expression, we created transcriptional fusions of PP with genes encoding surface recombinant proteins in a vector capable of integrating into the conjugative transposon Tn916. Surface recombinant proteins whose expression was controlled by the PP promoter were detected in Tn916-containing strains of S. gordonii and Bacillus subtilis after single copy chromosomal integration of the recombinant insertion vectors into the resident Tn916. The surface recombinant protein synthesized under the control of PP was also detected in Enterococcus faecalis after conjugal transfer of a recombinant Tn916 containing the transcriptional fusion. CONCLUSION: We isolated and characterized a S. gordonii chromosomal promoter. We demonstrated that this promoter can be used to direct expression of heterologous genes in different Gram-positive bacteria, when integrated in a single copy into the chromosome. | 2005 | 15651989 |
| 445 | 18 | 0.9995 | Selection of Shigella flexneri candidate virulence genes specifically induced in bacteria resident in host cell cytoplasm. We describe an in vivo expression technology (IVET)-like approach, which uses antibiotic resistance for selection, to identify Shigella flexneri genes specifically activated in bacteria resident in host cell cytoplasm. This procedure required construction of a promoter-trap vector containing a synthetic operon between the promoterless chloramphenicol acetyl transferase (cat) and lacZ genes and construction of a library of plasmids carrying transcriptional fusions between S. flexneri genomic fragments and the cat-lacZ operon. Clones exhibiting low levels (<10 micro g ml-1) of chloramphenicol (Cm) resistance on laboratory media were analysed for their ability to induce a cytophatic effect--plaque--on a cell monolayer, in the presence of Cm. These clones were assumed to carry a plasmid in which the cloned fragment acted as a promoter/gene which is poorly expressed under laboratory conditions. Therefore, only strains harbouring fusion-plasmids in which the cloned promoter was specifically activated within host cytoplasm could survive within the cell monolayer in the presence of Cm and give a positive result in the plaque assay. Pai (plaque assay induced) clones, selected following this procedure, were analysed for intracellular (i) beta-galactosidase activity, (ii) proliferation in the presence of Cm, and (iii) Cm resistance. Sequence analysis of Pai plasmids revealed genes encoding proteins of three functional classes: external layer recycling, adaptation to microaerophilic environment and gene regulation. Sequences encoding unknown functions were also trapped and selected by this new IVET-based protocol. | 2002 | 12390353 |
| 6313 | 19 | 0.9995 | A Novel Nonantibiotic, lgt-Based Selection System for Stable Maintenance of Expression Vectors in Escherichia coli and Vibrio cholerae. Antibiotic selection for the maintenance of expression plasmids is discouraged in the production of recombinant proteins for pharmaceutical or other human uses due to the risks of antibiotic residue contamination of the final products and the release of DNA encoding antibiotic resistance into the environment. We describe the construction of expression plasmids that are instead maintained by complementation of the lgt gene encoding a (pro)lipoprotein glyceryl transferase essential for the biosynthesis of bacterial lipoprotein. Mutations in lgt are lethal in Escherichia coli and other Gram-negative organisms. The lgt gene was deleted from E. coli and complemented by the Vibrio cholerae-derived gene provided in trans on a temperature-sensitive plasmid, allowing cells to grow at 30°C but not at 37°C. A temperature-insensitive expression vector carrying the V. cholerae-derived lgt gene was constructed, whereby transformants were selected by growth at 39°C. The vector was successfully used to express two recombinant proteins, one soluble and one forming insoluble inclusion bodies. Reciprocal construction was done by deleting the lgt gene from V. cholerae and complementing the lesion with the corresponding gene from E. coli The resulting strain was used to produce the secreted recombinant cholera toxin B subunit (CTB) protein, a component of licensed as well as newly developed oral cholera vaccines. Overall, the lgt system described here confers extreme stability on expression plasmids, and this strategy can be easily transferred to other Gram-negative species using the E. coli-derived lgt gene for complementation.IMPORTANCE Many recombinant proteins are produced in bacteria from genes carried on autonomously replicating DNA elements called plasmids. These plasmids are usually inherently unstable and rapidly lost. This can be prevented by using genes encoding antibiotic resistance. Plasmids are thus maintained by allowing only plasmid-containing cells to survive when the bacteria are grown in medium supplemented with antibiotics. In the described antibiotic-free system for the production of recombinant proteins, an essential gene is deleted from the bacterial chromosome and instead provided on a plasmid. The loss of the plasmid becomes lethal for the bacteria. Such plasmids can be used for the expression of recombinant proteins. This broadly applicable system removes the need for antibiotics in recombinant protein production, thereby contributing to reducing the spread of genes encoding antibiotic resistance, reducing the release of antibiotics into the environment, and freeing the final products (often used in pharmaceuticals) from contamination with potentially harmful antibiotic residues. | 2018 | 29222103 |