Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
304201.0000Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources. Members of the family Enterobacteriaceae harboring an enzyme of the aminoglycoside acetyltransferase 3 class (AAC-3-IV) (apramycin and gentamicin resistance) and hygromycin B phosphotransferase 4 (HPH-4-I) (hygromycin B resistance) have been isolated from human clinical sources in Europe. A cluster of genes containing IS140, aacC4, and hphB was found in these strains. We demonstrate by Southern hybridization that this cluster is identical to the operon found in animals that also contains insertion sequences belonging to the ISO family. This provides another example of presumptive transfer of antibiotic resistance genes between bacteria of animal and human origin.19901963287
450310.9995Evolution and transfer of aminoglycoside resistance genes under natural conditions. 3'-Aminoglycoside phosphotransferases [APH(3')] were chosen as a model to study the evolution and the transfer of aminoglycoside resistance genes under natural conditions. Comparison of the amino acid sequences of APH(3') enzymes from transposons Tn903 (type I) and Tn5 (type II) detected in Gram-negative bacteria, from the Gram-positive Staphylococcus and Streptococcus (type III), from the butirosin-producing Bacillus circulans (type IV) and from a neomycin-producing Streptomyces fradiae (type V) indicate that they have diverged from a common ancestor. These structural data support the hypothesis that the antibiotic-producing strains were the source of certain resistance determinants. We have shown that kanamycin resistance in Campylobacter coli BM2509 was due to the synthesis of an APH(3')-III, an enzyme not detected previously in a Gram-negative bacterium. The genes encoding APH(3')-III in Streptococcus and Campylobacter are identical. These findings constitute evidence for a recent in-vivo transfer of DNA between Gram-positive and Gram-negative bacteria.19863027020
304620.9994Presence of STRA-STRB linked streptomycin-resistance genes in clinical isolate of Escherichia coil 2418. The streptomycin resistance of Escherichia coli 2418 strain has been shown to be associated with a 1.2-kb DNA fragment found in the naturally occurring plasmid R2418S. Here, nucleotide sequence analysis of the 1.2-kb DNA fragment revealed the presence of the strB gene which is located immediately downstream of the strA gene. Both sequences are identical to those of strA and strB genes in plasmid RSF1010. Thus, the observed resistance in the clinical isolate is due to the presence of strA-strB genes encoding streptomycin-modifying enzymes. The sequence downstream of strB gene showed a perfect homology with that of RSF1010. In addition, it contained the right inverted repeat of the transposon Tn5393 that has been suggested to be a relic of this transposon found in DNA plasmids isolated from human- and animal-associated bacteria.201021598829
450130.9994A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. The ribosome protection type of tetracycline resistance (Tcr) has been found in a variety of bacterial species, but the only two classes described previously, Tet(M) and Tet(O), shared a high degree of amino acid sequence identity (greater than 75%). Thus, it appeared that this type of resistance emerged recently in evolution and spread among different species of bacteria by horizontal transmission. We obtained the DNA sequence of a Tcr gene from Bacteroides, a genus of gram-negative, obligately anaerobic bacteria that is phylogenetically distant from the diverse species in which tet(M) and tet(O) have been found. The Bacteroides Tcr gene defines a new class of ribosome protection resistance genes, Tet(Q), and has a deduced amino acid sequence that was only 40% identical to Tet(M) or Tet(O). Like tet(M) and tet(O), tet(Q) appears to have spread by horizontal transmission, but only within the Bacteroides group.19921339256
596240.9994Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.201222845886
304350.9994The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family.19846328217
585460.9994Discovery of a gene conferring multiple-aminoglycoside resistance in Escherichia coli. Bovine-origin Escherichia coli isolates were tested for resistance phenotypes using a disk diffusion assay and for resistance genotypes using a DNA microarray. An isolate with gentamicin and amikacin resistance but with no corresponding genes detected yielded a 1,056-bp DNA sequence with the closest homologues for its inferred protein sequence among a family of 16S rRNA methyltransferase enzymes. These enzymes confer high-level aminoglycoside resistance and have only recently been described in Gram-negative bacteria.201020368404
304570.9994Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. The relationship between sulfonamide resistance genes carried on different plasmids was investigated by restriction enzyme analysis and DNA-DNA hybridization. The results showed that sulfonamide resistance mediated by different plasmids is determined by the production of at least two different types of drug-resistant dihydropteroate synthase. Plasmids pGS01, pGS02, and R22259, found in bacteria isolated from patients in Swedish hospitals, contained identical sulfonamide resistance genes, which were also identical to those of plasmids R1, R100, R6, and R388. These latter plasmids, which have been well studied in different laboratories, were originally from clinical isolates from different parts of the world. Two other clinically isolated plasmids, pGS04 and pGS05, were shown to contain sulfonamide resistance determinants of a completely different type.19836298179
305480.9994Acquisition by a Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from members of the family Enterobacteriaceae. A Campylobacter-like organism, BM2196, resistant to kanamycin and streptomycin-spectinomycin was isolated from the feces of a patient with acute enteritis. The kanamycin and streptomycin-spectinomycin resistances were not transferable to Camplylobacter sp. or to Escherichia coli, and no plasmid DNA was detected in this strain. The resistance genes were therefore tentatively assigned to a chromosomal locality. Analysis by the phosphocellulose paper-binding assay of extracts from BM2196 indicated that resistance to kanamycin and structurally related antibiotics was due to the synthesis of 3'-aminoglycoside phosphotransferase type I [APH(3')-I], an enzyme specific for gram-negative bacteria, and that resistance to streptomycin-spectinomycin was secondary to the presence of a 3",9-aminoglycoside adenylyltransferase. Homology between BM2196 and an APH(3')-I probe was detected by DNA-DNA hybridization. A 2.2-kilobase BM2196 DNA fragment conferring resistance to kanamycin was cloned in E. coli and was sequenced partially. The resistance gene appeared nearly identical to that of Tn903 from E. coli and was adjacent to IS15-delta, an insertion sequence widespread in gram-negative bacteria, thus indicating that Campylobacter species can act as a recipient for genes originating in members of the family Enterobacteriaceae.19872821885
595790.9993ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized as the major bacterial agent responsible for food-transmitted gastroenteritis. The most effective antimicrobials against Campylobacter are macrolides and some, but not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside O-nucleotidyltransferases. The presence of streptomycin resistance genes was evaluated among streptomycin-resistant Campylobacter isolated from humans and animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible combinations with a major fraction of the isolates carrying a previously described ant-like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown by gene transfer and phenotype expression in Escherichia coli, unlike detected coding sequences in C. jejuni that were truncated by an internal frame shift associated to RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans, suggesting a circulation pathway of Campylobacter strains by consuming contaminated calf meat by bacteria expressing this streptomycin resistance element.201830405573
4529100.9993Evolution of gentamicin and arsenite resistance acquisition in Ralstonia pickettii water isolates. Ralstonia pickettii are ubiquitous in water environments. Members of this species are frequently, but not always, resistant to both gentamicin and arsenite. Gentamicin and arsenite co-resistance and the putative molecular mechanisms were investigated. A group of 37 R. pickettii strains isolated from drinking water and hospital wastewater were characterized for gentamicin and arsenite resistance phenotypes, the number and size of plasmids, and screened for genetic elements associated with arsenite tolerance, Integrative and Conjugative Elements (ICEs), among other. The genomes of three representative strains were compared. Most gentamicin resistant (GR) isolates (32/33) were resistant to arsenite, and harbored ICE- and ars operon-related genes. These genetic elements were not detected in any of the five arsenite susceptible strains, regardless of the GR (n = 1) or gentamicin susceptibility (GS) (n = 4) phenotype. The comparison of the genomes of two GR (one resistant and one susceptible to arsenite) and one GS strains suggested that these phenotypes correspond to three phylogroups, distinguished by presence of some genes only in GR isolates, in addition to point mutations in functional genes. The presence of ICEs and ars operon-related genes suggest that arsenite resistance might have been acquired by GR lineages.202133197514
5956110.9993Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. Seven (27%) of 26 gentamicin-resistant human clinical isolates of Escherichia coli were resistant to the veterinary aminoglycoside antibiotic apramycin. A gentamicin-resistant Klebsiella pneumoniae isolate from a patient infected with gentamicin/apramycin-resistant E. coli was also resistant to apramycin. DNA hybridisation studies showed that all gentamicin/apramycin-resistant isolates contained a gene encoding the enzyme 3-N-aminoglycoside acetyltransferase type IV (AAC[3]IV) that mediates resistance to gentamicin and apramycin in bacteria isolated from animals. Seven of the eight gentamicin/apramycin-resistant isolates were also resistant to the veterinary antihelminthic agent hygromycin B, a phenomenon observed previously in gentamicin/apramycin-resistant Enterobacteriaceae isolated from animals. Resistance to gentamicin/apramycin and hygromycin B was co-transferable in six of the isolates. Restriction enzyme analysis of plasmids in apramycin-resistant transconjugants derived from E. coli and K. pneumoniae isolates from the same patient were virtually identical, suggesting that inter-generic transfer of plasmids encoding apramycin resistance had occurred in vivo. These findings support the view that resistance to gentamicin and apramycin in clinical isolates of E. coli results from the spread of resistant organisms from animals to man, with subsequent inter-strain or inter-species spread, or both, of resistance genes on transferable plasmids.19948114074
5860120.9993Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
3044130.9993RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. The nucleotide sequence of the type II sulfonamide resistance dihydropteroate synthase (sulII) gene was determined. The molecular weight determined by maxicells was 30,000, and the predicted molecular weight for the polypeptide was 28,469. Comparison with the sulI gene encoded by Tn21 showed 57% DNA similarity. The sulII-encoded polypeptide has 138 of 271 amino acids in common with the polypeptide encoded by sulI. The sulII gene is located on various IncQ (broad-host-range) plasmids and other small nonconjugative resistance plasmids. Detailed restriction maps were constructed to compare the different plasmids in which sulII is found. The large conjugative plasmid pGS05 and the IncQ plasmid RSF1010 contained identical nucleotide sequences for the sulII gene. This type of sulfonamide resistance is very frequently found among gram-negative bacteria because of its efficient spread to various plasmids.19883075438
4499140.9993Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. The organization of two widely distributed sulfonamide resistance genes has been studied. The type I gene was linked to other resistance genes, like streptomycin resistance in R100 and trimethoprim resistance in R388 and other recently isolated plasmids from Sri Lanka. In R388, the sulfonamide resistance gene was transcribed from a promoter of its own, but in all other studied plasmids the linked genes were transcribed from a common promoter. This was especially established with a clone derived from plasmid R6-5, in which transposon mutagenesis showed that expression of sulfonamide resistance was completely dependent on the linked streptomycin resistance gene. The type II sulfonamide resistance gene was independently transcribed and found on two kinds of small resistance plasmids and also on large plasmids isolated from clinical material.19873032095
5960150.999316S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Most Helicobacter pylori strains are susceptible to tetracycline, an antibiotic commonly used for the eradication of H. pylori. However, an increase in incidence of tetracycline resistance in H. pylori has recently been reported. Here the mechanism of tetracycline resistance of the first Dutch tetracycline-resistant (Tet(r)) H. pylori isolate (strain 181) is investigated. Twelve genes were selected from the genome sequences of H. pylori strains 26695 and J99 as potential candidate genes, based on their homology with tetracycline resistance genes in other bacteria. With the exception of the two 16S rRNA genes, none of the other putative tetracycline resistance genes was able to transfer tetracycline resistance. Genetic transformation of the Tet(s) strain 26695 with smaller overlapping PCR fragments of the 16S rRNA genes of strain 181, revealed that a 361-bp fragment that spanned nucleotides 711 to 1071 was sufficient to transfer resistance. Sequence analysis of the 16S rRNA genes of the Tet(r) strain 181, the Tet(s) strain 26695, and four Tet(r) 26695 transformants showed that a single triple-base-pair substitution, AGA(926-928)-->TTC, was present within this 361-bp fragment. This triple-base-pair substitution, present in both copies of the 16S rRNA gene of all our Tet(r) H. pylori transformants, resulted in an increased MIC of tetracycline that was identical to that for the Tet(r) strain 181.200212183259
5411160.9993Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ')-III in commensal viridans group streptococci. High-level aminoglycoside resistance was assessed in 190 commensal erythromycin-resistant alpha-hemolytic streptococcal strains. Of these, seven were also aminoglycoside-resistant: one Streptococcus mitis strain was resistant to high levels of kanamycin and carried the aph(3 ')-III gene, four S. mitis strains were resistant to high levels of streptomycin and lacked aminoglycoside-modifying enzymes, and two S. oralis strains that were resistant to high levels of kanamycin and streptomycin harbored both the aph(3 ')-III and the ant(6) genes. The two S. oralis strains also carried the ant(6)-sat4- aph(3 ' ')-III aminoglycoside-streptothricin resistance gene cluster, but it was not contained in a Tn5405-like structure. The presence of this resistance gene cluster in commensal streptococci suggests an exchange of resistance genes between these bacteria and enterococci or staphylococci.200717407061
3040170.9993Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes.201627667524
4524180.9993Functional genomics in Campylobacter coli identified a novel streptomycin resistance gene located in a hypervariable genomic region. Numerous aminoglycoside resistance genes have been reported in Campylobacter spp. often resembling those from Gram-positive bacterial species and located in transferable genetic elements with other resistance genes. We discovered a new streptomycin (STR) resistance gene in Campylobactercoli showing 27-34 % amino acid identity to aminoglycoside 6-nucleotidyl-transferases described previously in Campylobacter. STR resistance was verified by gene expression and insertional inactivation. This ant-like gene differs from the previously described aminoglycoside resistance genes in Campylobacter spp. in several aspects. It does not appear to originate from Gram-positive bacteria and is located in a region corresponding to a previously described hypervariable region 14 of C. jejuni with no other known resistance genes detected in close proximity. Finally, it does not belong to a multiple drug resistance plasmid or transposon. This novel ant-like gene appears widely spread among C. coli as it is found in strains originating both from Europe and the United States and from several, apparently unrelated, hosts and environmental sources. The closest homologue (60 % amino acid identity) was found in certain C. jejuni and C. coli strains in a similar genomic location, but an association with STR resistance was not detected. Based on the findings presented here, we hypothesize that Campylobacter ant-like gene A has originated from a common ancestral proto-resistance element in Campylobacter spp., possibly encoding a protein with a different function. In conclusion, whole genome sequencing allowed us to fill in a knowledge gap concerning STR resistance in C. coli by revealing a novel STR resistance gene possibly inherent to Campylobacter.201627154456
5961190.9993Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples. The soil microbial community is highly complex and contains a high density of antibiotic-producing bacteria, making it a likely source of diverse antibiotic resistance determinants. We used functional metagenomics to search for antibiotic resistance genes in libraries generated from three different soil samples, containing 3.6 Gb of DNA in total. We identified 11 new antibiotic resistance genes: 3 conferring resistance to ampicillin, 2 to gentamicin, 2 to chloramphenicol and 4 to trimethoprim. One of the clones identified was a new trimethoprim resistance gene encoding a 26.8 kDa protein closely resembling unassigned reductases of the dihydrofolate reductase group. This protein, Tm8-3, conferred trimethoprim resistance in Escherichia coli and Sinorhizobium meliloti (γ- and α-proteobacteria respectively). We demonstrated that this gene encoded an enzyme with dihydrofolate reductase activity, with kinetic constants similar to other type I and II dihydrofolate reductases (K(m) of 8.9 µM for NADPH and 3.7 µM for dihydrofolate and IC(50) of 20 µM for trimethoprim). This is the first description of a new type of reductase conferring resistance to trimethoprim. Our results indicate that soil bacteria display a high level of genetic diversity and are a reservoir of antibiotic resistance genes, supporting the use of this approach for the discovery of novel enzymes with unexpected activities unpredictable from their amino acid sequences.201121281423