Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
304001.0000Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes.201627667524
304610.9995Presence of STRA-STRB linked streptomycin-resistance genes in clinical isolate of Escherichia coil 2418. The streptomycin resistance of Escherichia coli 2418 strain has been shown to be associated with a 1.2-kb DNA fragment found in the naturally occurring plasmid R2418S. Here, nucleotide sequence analysis of the 1.2-kb DNA fragment revealed the presence of the strB gene which is located immediately downstream of the strA gene. Both sequences are identical to those of strA and strB genes in plasmid RSF1010. Thus, the observed resistance in the clinical isolate is due to the presence of strA-strB genes encoding streptomycin-modifying enzymes. The sequence downstream of strB gene showed a perfect homology with that of RSF1010. In addition, it contained the right inverted repeat of the transposon Tn5393 that has been suggested to be a relic of this transposon found in DNA plasmids isolated from human- and animal-associated bacteria.201021598829
304120.9994pCERC1, a small, globally disseminated plasmid carrying the dfrA14 cassette in the strA gene of the sul2-strA-strB gene cluster. Commensal Escherichia coli from healthy adult humans were screened for antibiotic resistance genes. Two unrelated strains contained the sul2 sulphonamide resistance gene and strAB streptomyicn resistance genes with the dfrA14 trimethoprim resistance gene cassette in the strA gene and conferred resistance to trimethoprim and sulphamethoxazole. A 6.8 kb plasmid, pCERC1, that contains these resistance genes was recovered and sequenced. Deletions were constructed, and the pCERC1 replication region was confined to a 1 kb segment carrying genes for RNAs that are closely related to the ColE1 replication initiation RNAs. Polymerase chain reaction assays, developed to detect the sul2-strA-strB gene cluster in this context, identified a streptomycin and sulphonamide resistance plasmid, pCERC2, identical to pCERC1 without the dfrA14 cassette in two further E. coli isolates. Bioinformatic analysis revealed plasmids similar to pCERC1 and two more members of this family. One, the probable progenitor, carries only the sul2 gene adjacent to the small mobile element CR2. The other has a variant resistance gene cluster that has evolved from pCERC2 via acquisition of the tet(A) tetracycline resistance determinant. pCERC1 and pCERC2 have been detected in many countries, indicating a global distribution and appear to have been circulating in Gram-negative bacteria for more than 25 years.201222416992
304430.9994RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. The nucleotide sequence of the type II sulfonamide resistance dihydropteroate synthase (sulII) gene was determined. The molecular weight determined by maxicells was 30,000, and the predicted molecular weight for the polypeptide was 28,469. Comparison with the sulI gene encoded by Tn21 showed 57% DNA similarity. The sulII-encoded polypeptide has 138 of 271 amino acids in common with the polypeptide encoded by sulI. The sulII gene is located on various IncQ (broad-host-range) plasmids and other small nonconjugative resistance plasmids. Detailed restriction maps were constructed to compare the different plasmids in which sulII is found. The large conjugative plasmid pGS05 and the IncQ plasmid RSF1010 contained identical nucleotide sequences for the sulII gene. This type of sulfonamide resistance is very frequently found among gram-negative bacteria because of its efficient spread to various plasmids.19883075438
305440.9994Acquisition by a Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from members of the family Enterobacteriaceae. A Campylobacter-like organism, BM2196, resistant to kanamycin and streptomycin-spectinomycin was isolated from the feces of a patient with acute enteritis. The kanamycin and streptomycin-spectinomycin resistances were not transferable to Camplylobacter sp. or to Escherichia coli, and no plasmid DNA was detected in this strain. The resistance genes were therefore tentatively assigned to a chromosomal locality. Analysis by the phosphocellulose paper-binding assay of extracts from BM2196 indicated that resistance to kanamycin and structurally related antibiotics was due to the synthesis of 3'-aminoglycoside phosphotransferase type I [APH(3')-I], an enzyme specific for gram-negative bacteria, and that resistance to streptomycin-spectinomycin was secondary to the presence of a 3",9-aminoglycoside adenylyltransferase. Homology between BM2196 and an APH(3')-I probe was detected by DNA-DNA hybridization. A 2.2-kilobase BM2196 DNA fragment conferring resistance to kanamycin was cloned in E. coli and was sequenced partially. The resistance gene appeared nearly identical to that of Tn903 from E. coli and was adjacent to IS15-delta, an insertion sequence widespread in gram-negative bacteria, thus indicating that Campylobacter species can act as a recipient for genes originating in members of the family Enterobacteriaceae.19872821885
357250.9994Comparative analysis of sequences flanking tet(W) resistance genes in multiple species of gut bacteria. tet(W) is one of the most abundant tetracycline resistance genes found in bacteria from the mammalian gut and was first identified in the rumen anaerobe Butyrivibrio fibrisolvens 1.230, where it is highly mobile and its transfer is associated with the transposable chromosomal element TnB1230. In order to compare the genetic basis for tet(W) carriage in different bacteria, we studied sequences flanking tet(W) in representatives of seven bacterial genera originating in diverse gut environments. The sequences 657 bp upstream and 43 bp downstream of tet(W) were 96 to 100% similar in all strains examined. A common open reading frame (ORF) was identified downstream of tet(W) in five different bacteria, while another conserved ORF that flanked tet(W) in B. fibrisolvens 1.230 was also present upstream of tet(W) in a human colonic Roseburia isolate and in another rumen B. fibrisolvens isolate. In one species, Bifidobacterium longum (strain F8), a novel transposase was located within the conserved 657-bp region upstream of tet(W) and was flanked by imperfect direct repeats. Additional direct repeats 6 bp long were identified on each end of a chromosomal ORF interrupted by the insertion of the putative transposase and the tet(W) gene. This tet(W) gene was transferable at low frequencies between Bifidobacterium strains. A putative minielement carrying a copy of tet(W) was identified in B. fibrisolvens transconjugants that had acquired the tet(W) gene on TnB1230. Several different mechanisms, including mechanisms involving plasmids and conjugative transposons, appear to be involved in the horizontal transfer of tet(W) genes, but small core regions that may function as minielements are conserved.200616870752
586060.9994Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. Twenty-three isolates of the two genera Pasteurella (P.) and Mannheimia (M.) were analysed for the presence of genes specifying resistance to sulfonamides, streptomycin, and chloramphenicol. Specific PCR assays for the detection of the genes sulII, strA and catAIII, but also for the confirmation of their physical linkage were developed. A resistance gene cluster consisting of all three genes and characterised by a PCR amplicon of 2.2 kb was detected on four different types of plasmids and also in the chromosomal DNA of seven isolates. Physically linked sulII and strA genes were detected on three different types of plasmids and in the chromosomal DNA of three isolates. Sequence analysis of the different PCR amplicons revealed that these genes were present in either the orientation sulII-strA separated by differently sized spacer sequences, or strA-sulII. A truncated strA gene preceding a sulII gene was also detected in two cases.200111750817
453070.9993Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. The emergence of drug-resistant bacteria is a severe problem in aquaculture. The ability of drug resistance genes to transfer from a bacterial cell to another is thought to be responsible for the wide dissemination of these genes in the aquaculture environment; however, little is known about the gene transfer mechanisms in marine bacteria. In this study, we show that a tetracycline-resistant strain of Photobacterium damselae subsp. damselae, isolated from seawater at a coastal aquaculture site in Japan, harbors a novel multiple drug resistance plasmid. This plasmid named pAQU1 can be transferred to Escherichia coli by conjugation. Nucleotide sequencing showed that the plasmid was 204,052 base pairs and contained 235 predicted coding sequences. Annotation showed that pAQU1 did not have known repA, suggesting a new replicon, and contained seven drug resistance genes: bla(CARB-9)-like, floR, mph(A)-like, mef(A)-like, sul2, tet(M) and tet(B). The plasmid has a complete set of genes encoding the apparatus for the type IV secretion system with a unique duplication of traA. Phylogenetic analysis of the deduced amino acid sequence of relaxase encoded by traI in pAQU1 demonstrated that the conjugative transfer system of the plasmid belongs to MOB(H12), a sub-group of the MOB(H) plasmid family, closely related to the IncA/C type of plasmids and SXT/R391 widely distributed among species of Enterobacteriaceae and Vibrionaceae. Our data suggest that conjugative transfer is involved in horizontal gene transfer among marine bacteria and provide useful insights into the molecular basis for the dissemination of drug resistance genes among bacteria in the aquaculture environment.201222446310
304380.9993The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2"). In 7% of gram-negative bacteria resistance to gentamicin is mainly mediated by plasmid-encoded aminoglycoside transferase ANT-(2"). The genome organization of 15 aadB plasmids (42-110 kb) was analyzed by restriction and hybridization techniques. They appeared to be IncFII-like replicons but were distinct from R6 by virtue of small substitutions in the transfer region. Aminoglycoside resistance genes aadB and aadA were located on Tn21 related elements. Only one of them was able to transpose its resistance genes mer sul aadA and aadB ( Tn4000 ), the other elements were naturally occurring defective transposons. In some of these structures deletions were identified at the termini, at sul, aadA , mer or transposition function--insertions adjacent to aadA or mer. The mode of these rearrangements and their site-specificity were considered with respect to the evolution of the Tn21 transposon family.19846328217
586190.9993Distribution of genes conferring combined resistance to tetracycline and minocycline among group B streptococcal isolates from humans and various animals. Forty-nine tetracycline and minocycline resistant streptococci of serological group B isolated from humans, cattle, pigs and nutrias were investigated for the presence of genes conferring this combined resistance. Southern blot hybridization of EcoRI-digested chromosomal DNA of the bacteria revealed for 39 of the cultures a hybridization signal with tet(M), for four of the cultures a hybridization signal with tet(O) and for none of the cultures a hybridization signal with the tet(Q) gene probe. The restriction endonuclease digested and blotted DNA of six tetracycline and minocycline resistant group B streptococci did not hybridize with any of the available gene probes. The tet(M) gene probes recognized complementary sequences of EcoRI fragments of approximately 10.5 kb and 21.5 kb, the tet(O) gene probe hybridized with fragments of approximately 19 kb. The hybridization of the tet(M) gene probe in two different patterns appeared to be related to the origin of the cultures.19947727901
3045100.9993Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. The relationship between sulfonamide resistance genes carried on different plasmids was investigated by restriction enzyme analysis and DNA-DNA hybridization. The results showed that sulfonamide resistance mediated by different plasmids is determined by the production of at least two different types of drug-resistant dihydropteroate synthase. Plasmids pGS01, pGS02, and R22259, found in bacteria isolated from patients in Swedish hospitals, contained identical sulfonamide resistance genes, which were also identical to those of plasmids R1, R100, R6, and R388. These latter plasmids, which have been well studied in different laboratories, were originally from clinical isolates from different parts of the world. Two other clinically isolated plasmids, pGS04 and pGS05, were shown to contain sulfonamide resistance determinants of a completely different type.19836298179
5846110.9993Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tc(r)) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tc(r) determinants. Tc(r) was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tc(r) was not identified in 16% of the isolates studied. The Tc(r) genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tc(r) determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.199910543801
3042120.9993Aminoglycoside acetyltransferase 3-IV (aacC4) and hygromycin B 4-I phosphotransferase (hphB) in bacteria isolated from human and animal sources. Members of the family Enterobacteriaceae harboring an enzyme of the aminoglycoside acetyltransferase 3 class (AAC-3-IV) (apramycin and gentamicin resistance) and hygromycin B phosphotransferase 4 (HPH-4-I) (hygromycin B resistance) have been isolated from human clinical sources in Europe. A cluster of genes containing IS140, aacC4, and hphB was found in these strains. We demonstrate by Southern hybridization that this cluster is identical to the operon found in animals that also contains insertion sequences belonging to the ISO family. This provides another example of presumptive transfer of antibiotic resistance genes between bacteria of animal and human origin.19901963287
1771130.9993Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment.200319719593
1770140.9993Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Plasmid-encoded quinolone resistance was previously reported for different bacteria isolated from patients not only in the United States and Asia but also in Europe. Here we describe the isolation, by applying a new selection strategy, of the quinolone resistance plasmid pGNB2 from an activated sludge bacterial community of a wastewater treatment plant in Germany. The hypersensitive Escherichia coli strain KAM3 carrying a mutation in the multidrug efflux system genes acrAB was transformed with total plasmid DNA preparations isolated from activated sludge bacteria and subsequently selected on medium containing the fluoroquinolone norfloxacin. This approach resulted in the isolation of plasmid pGNB2 conferring decreased susceptibility to nalidixic acid and to different fluoroquinolones. Analysis of the pGNB2 nucleotide sequence revealed that it is 8,469 bp in size and has a G+C content of 58.2%. The plasmid backbone is composed of a replication initiation module (repA-repC) belonging to the IncQ-family and a two-component mobilization module that confers horizontal mobility to the plasmid. In addition, plasmid pGNB2 carries an accessory module consisting of a transposon Tn1721 remnant and the quinolone resistance gene, qnrS2, that is 92% identical to the qnrS gene located on plasmid pAH0376 from Shigella flexneri 2b. QnrS2 belongs to the pentapeptide repeat protein family and is predicted to protect DNA-gyrase activity against quinolones. This is not only the first report on a completely sequenced plasmid mediating quinolone resistance isolated from an environmental sample but also on the first qnrS-like gene detected in Europe.200616940104
3039150.9993Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. We report the linkage of the strA-strB streptomycin-resistance genes with Class 1 integron sequences on pSTR1, a 75-kb multiple antibiotic-resistance plasmid from Shigella flexneri. strA-strB had previously been detected only within Tn 5393, a Tn 3-family transposon, and on small nonconjugative broad-host-range plasmids such as RSF1010. The geographic range of Tn 5393 was also extended to Pseudomonas spp. isolated from apple trees in New Zealand and soil in the USA. Comparative sequence analyses indicated that strA-strB from Tn 5393 and nonconjugative plasmids constitute distinct recent lineages with strA-strB from pSTR1 intermediate between the other two. The carriage of strA-strB within an integron, a transposon, and on broad-host-range plasmids has facilitated the world-wide dissemination of this determinant among at least 21 bacterial genera.200212029529
5868160.9993Evaluation of plasmid content and tetracycline resistance conjugative transfer in Enterococcus italicus strains of dairy origin. Five Enterococcus italicus strains harbouring tet genes responsible for the tetracycline resistance were subjected to plasmid profile determination studies. For four strains tested the profiles showed between three and six plasmid bands, the size of which ranged between 1.6 and 18.5 kb. Southern hybridization experiments associated tetS and tetK genes with chromosomal DNA in all strains and tetM gene with plasmids of around the same size (18.5 kb) in two of the tested strains. The ability of the new species to transfer tetM gene was studied by transfer experiments with the tetracycline-susceptible recipient strains E. faecalis JH2-2 and OG1RF; mobilization experiments were performed with E. faecalis JH 2-2 harbouring the conjugative plasmid pIP501as helper plasmid. The results obtained show that the new enterococcal species was able to acquire antibiotic resistance by conjugation, but not to transfer its plasmids to other bacteria. Further PCR and hybridization experiments carried out to assess the presence of mobilization sequences also suggest that the tetM plasmid from E. italicus is a non-mobilizable plasmid.200919484299
5851170.9993Arsenic resistance determinants from environmental bacteria. Arsenic resistance determinants from 42 environmental bacterial isolates (32 Gram negative) were analyzed by DNA: DNA hybridization using probes derived from Escherichia coli and Staphylococcus plasmid or chromosomal arsenic resistance (ars) genes. In colony hybridization assays, 11 and 1 Gram negative strains hybridized with the E. coli chromosome and plasmid probes, respectively. No hybridization was detected using a probe containing only the arsA (ATPase) gene from E. coli plasmid or with a Staphylococcus plasmid ars probe. From Southern hybridization tests of some of the positive strains it was concluded that homology to ars chromosomal genes occurred within chromosome regions, except in an E. coli isolate where hybridization occurred in both the chromosome and a 130-kb plasmid. Our results show that DNA sequences homologous to E. coli ars chromosomal genes are commonly present in the chromosomes of environmental arsenic-resistant Gram negative isolates.199810932734
5867180.9993Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. OBJECTIVES: Three florfenicol-resistant Pasteurella multocida isolates from Germany, two from swine and one from a calf, were investigated for the genetics and transferability of florfenicol resistance. METHODS: The isolates were investigated for susceptibility to antimicrobial agents and plasmid content. Florfenicol resistance plasmids carrying the gene floR were identified by transformation and PCR. Plasmids were mapped, and a novel plasmid type was sequenced completely. PFGE served to determine the clonality of the isolates. RESULTS: In one porcine and the bovine P. multocida isolate, florfenicol resistance was associated with the plasmid pCCK381 previously described in a bovine P. multocida isolate from the UK. The remaining porcine isolate harboured a new type of floR-carrying plasmid, the 10 226 bp plasmid pCCK1900. Complete sequence analysis identified an RSF1010-like plasmid backbone with the mobilization genes mobA, mobB and mobC, the plasmid replication genes repA, repB and repC, the sulphonamide resistance gene sul2 and the streptomycin resistance genes strA and strB. The floR gene area was integrated into a region downstream of strB, which exhibited homology to the floR flanking regions found in various bacteria. PFGE revealed that the floR-carrying P. multocida strains from Germany were unrelated and also different from the UK strain. CONCLUSIONS: After the UK and France, floR-mediated florfenicol resistance has now also been identified in target bacteria from Germany. PFGE data and the analysis of plasmids strongly suggested that the spread of florfenicol resistance is due to the horizontal transfer of plasmids rather than the clonal dissemination of a resistant P. multocida isolate.200818786941
3559190.9992Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area. Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.201828642992