# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3026 | 0 | 1.0000 | Novel Transposon Tn6433 Variants Accelerate the Dissemination of tet(E) in Aeromonas in an Aerobic Biofilm Reactor under Oxytetracycline Stresses. Little is known about the mechanisms that disseminate antibiotic resistance genes (ARGs) in wastewater microbial communities under antibiotic stress. The role of horizontal transfer mechanisms in dissemination of ARGs in an aerobic biofilm reactor under incremental oxytetracycline doses from 0 to 50 mg/L was studied. Aeromonas strains were the most common culturable bacteria in the reactor, with tet(E) as the most prevalent ARGs (73.3%) being possibly responsible for the oxytetracycline resistance phenotype. Genomic sequencing demonstrated that tet(E) was mainly carried by a Tn3 family transposon named Tn6433, whose incidence increased from 14.6% to 75.0% across the treatments. Tn6433 carrying tet(E) was initially detected in Aeromonas chromosomes at an oxytetracycline dose of 1 mg/L but subsequently detected on plasmids pAeca1-a variants (pAeca1-a, pAeca1-b, and pAeme6) and pAeca2 under higher oxytetracycline stress. The core region of the Tn6433-tet(E) structure was highly conserved, consisting of a transposition and resolution module, a class 1 integron, core passenger genes, and a Tn1722/Tn501-like transposon. Such a structure was found on both the chromosome and plasmids, suggesting that Tn6433 mediated the transposition of tet(E) from the chromosome to plasmid pAeca2 under increasing stresses. Bacteria carrying the transferable plasmid pAeca1-a were dominant in high antibiotic treatments, suggesting that Tn6433 disseminated tet(E), conferring selective advantages to recipients of this ARG. | 2020 | 32384241 |
| 3363 | 1 | 0.9993 | Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Bioactive amounts of antibiotics as well as resistant bacteria reach the soil through manure fertilization. We investigated plasmids that may stimulate the environmental spread and interspecies transfer of antibiotic resistance. After treatment of two soils with manure, either with or without the sulfonamide antibiotic sulfadiazine, a significant increase in copies of the sulfonamide resistance gene sul2 was detected by qPCR. All sul2 carrying plasmids, captured in Escherichia coli from soil, belonged to a novel class of self-transferable replicons. Manuring and sulfadiazine significantly increased the abundance of this replicon type in a chemically fertilized but not in an annually manured soil, as determined by qPCR targeting a transfer gene. Restriction patterns and antibiograms showed a considerable diversity within this novel plasmid group. Analysis of three complete plasmid sequences revealed a conserved 30 kbp backbone with only 36% G+C content, comprised of transfer and maintenance genes with moderate homology to plasmid pIPO2 and a replication module (rep and oriV) of other descent. The plasmids differed in composition of the 27.0-28.3 kbp accessory region, each of which carried ISCR2 and several resistance genes. Acinetobacter spp. was identified as a potential host of such LowGC-type plasmids in manure and soil. | 2009 | 19055690 |
| 3437 | 2 | 0.9992 | Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying ≥ 2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations. | 2018 | 29332216 |
| 3438 | 3 | 0.9992 | Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. Class 1 integrons are strongly associated with the dissemination of antibiotic resistance in bacteria. However, little is known about whether the presence of antibiotics affects the abundance of integrons and antibiotic resistance genes during biological wastewater treatment. To explore the roles of class 1 integrons in spreading antibiotic resistance genes in environmental compartments, the dynamics of integrons were followed in biofilm reactors treating synthetic wastewater respectively spiked with streptomycin (STM) and oxytetracycline (OTC). The relative abundance of the integron-integrase gene (intI1) increased 12 or 29-fold respectively when treated with STM or OTC, under incrementally increasing dosage regimes from 0 to 50 mg L(-1). Significant increases in intI1 abundance initially occurred at an antibiotic dose of 0.1 mg L(-1). At the beginning of the experiment, 51% to 64% of integrons carried no gene cassettes. In STM and OTC spiked systems, there was a significant increase in the proportion of integrons that contained resistance gene cassettes, particularly at intermediate and higher antibiotic concentrations. Gene cassettes encoding resistance to aminoglycosides, trimethoprim, beta-lactam, erythromycin, and quaternary ammonium compounds were all detected in the treated systems. Three tetracycline resistance genes (tetA, tetC, tetG) were significantly correlated with the abundance of intI1 (p < 0.01), despite no tet resistance being present as a gene cassette. Genome sequencing of isolates showed synteny between the tet resistance genes and intI1, mediated through linkage to transposable elements including Tn3, IS26 and ISCR3. Class 1 integrons appeared to be under positive selection in the presence of antibiotics, and might have actively acquired new gene cassettes during the experiment. | 2020 | 32474215 |
| 4531 | 4 | 0.9992 | Various pAQU plasmids possibly contribute to disseminate tetracycline resistance gene tet(M) among marine bacterial community. Emergence of antibiotic-resistant bacteria in the aquaculture environment is a significant problem for disease control of cultured fish as well as in human public health. Conjugative mobile genetic elements (MGEs) are involved in dissemination of antibiotic resistance genes (ARGs) among marine bacteria. In the present study, we first designed a PCR targeting traI gene encoding essential relaxase for conjugation. By this new PCR, we demonstrated that five of 83 strains isolated from a coastal aquaculture site had traI-positive MGEs. While one of the five strains that belonged to Shewanella sp. was shown to have an integrative conjugative element of the SXT/R391 family (ICEVchMex-like), the MGEs of the other four strains of Vibrio spp. were shown to have the backbone structure similar to that of previously described in pAQU1. The backbone structure shared by the pAQU1-like plasmids in the four strains corresponded to a ~100-kbp highly conserved region required for replication, partition and conjugative transfer, suggesting that these plasmids constituted "pAQU group." The pAQU group plasmids were shown to be capable of conjugative transfer of tet(M) and other ARGs from the Vibrio strains to E. coli. The pAQU group plasmid in one of the examined strains was designated as pAQU2, and its complete nucleotide sequence was determined and compared with that of pAQU1. The results revealed that pAQU2 contained fewer ARGs than pAQU1 did, and most of the ARGs in both of these plasmids were located in the similar region where multiple transposases were found, suggesting that the ARGs were introduced by several events of DNA transposition into an ancestral plasmid followed by drug selection in the aquaculture site. The results of the present study indicate that the "pAQU group" plasmids may play an important role in dissemination of ARGs in the marine environment. | 2014 | 24860553 |
| 3025 | 5 | 0.9991 | IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172(T) , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172(T) for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids. | 2022 | 36306376 |
| 3569 | 6 | 0.9991 | Identification of a new ribosomal protection type of tetracycline resistance gene, tet(36), from swine manure pits. Previously, only one ribosome protection type of a tetracycline resistance gene, tetQ, had been identified in Bacteroides spp. During an investigation of anaerobic bacteria present in swine feces and manure storage pits, a tetracycline-resistant Bacteroides strain was isolated. Subsequent analysis showed that this new Bacteroides strain, Bacteroides sp. strain 139, did not contain tetQ but contained a previously unidentified tetracycline resistance gene. Sequence analysis showed that the tetracycline resistance gene from Bacteroides sp. strain 139 encoded a protein (designated Tet 36) that defines a new class of ribosome protection types of tetracycline resistance. Tet 36 has 60% amino acid identity over 640 aa to TetQ and between 31 and 49% amino acid identity to the nine other ribosome protection types of tetracycline resistance genes. The tet(36) region was not observed to transfer from Bacteroides sp. strain 139 to another Bacteroides sp. under laboratory conditions. Yet tet(36) was found in other genera of bacteria isolated from the same swine manure pits and from swine feces. Phylogenetic analysis of the tet(36)-containing isolates indicated that tet(36) was present not only in the Cytophaga-Flavobacter-Bacteroides group to which Bacteroides sp. strain 139 belongs but also in gram-positive genera and gram-negative proteobacteria, indicating that horizontal transfer of tet(36) is occurring between these divergent phylogenetic groups in the farm environment. | 2003 | 12839793 |
| 4528 | 7 | 0.9991 | Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae. As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus. | 2017 | 28923604 |
| 3331 | 8 | 0.9991 | Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments. | 2018 | 29475864 |
| 3362 | 9 | 0.9991 | Impact of mesophilic anaerobic digestion and post-treatment of digestates on the transfer of conjugative antimicrobial resistance plasmids. Manure is a major source of antimicrobial-resistant bacteria and resistance genes carried by mobile genetic elements such as plasmids. In France, the number of on-farm biogas plants has increased significantly in recent years. Our study investigated the impact of mesophilic anaerobic digestion (AD) and the post-treatment of digestates on the fate of conjugative plasmids, along with their potential transfer of antimicrobial resistance. Samples of raw manure, digestates and post-treated digestates were collected from three on-farm biogas plants. Conjugative plasmids were captured using the Escherichia coli CV601 recipient strain and media supplemented with rifampicin and kanamycin - to which the recipient strain is resistant - and tetracycline, sulfamethoxazole, gentamicin, trimethoprim, amoxicillin, cefotaxime, ciprofloxacin or colistin. Putative transconjugants were identified and characterised by disc diffusion and whole genome sequencing. The results showed that the antimicrobial resistance genes transferred from the different matrices conferred resistance to tetracyclines, sulphonamides, trimethoprim, and/or streptomycin. Transconjugants were obtained from raw manure samples but not from digestates or post-digestates, suggesting that mesophilic AD processes may produce fewer conjugative plasmids potentially able to be transferred to Enterobacterales. | 2022 | 35963201 |
| 3563 | 10 | 0.9991 | Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer. | 2014 | 25653641 |
| 3602 | 11 | 0.9990 | Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Phylogenetic analysis of tetracycline resistance genes, which confer resistance due to the efflux of tetracycline from the cell catalyzed by drug:H(+) antiport and share a common structure with 12 transmembrane segments (12-TMS), suggested the monophyletic origin of these genes. With a high degree of confidence, this tet subcluster unifies 11 genes encoding tet efflux pumps and includes tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(H), tet(J), tet(Y), tet(Z), and tet(30). Phylogeny-aided alignments were used to design a set of PCR primers for detection, retrieval, and sequence analysis of the corresponding gene fragments from a variety of bacterial and environmental sources. After rigorous validation with the characterized control tet templates, this primer set was used to determine the genotype of the corresponding tetracycline resistance genes in total DNA of swine feed and feces and in the lagoons and groundwater underlying two large swine production facilities known to be impacted by waste seepage. The compounded tet fingerprint of animal feed was found to be tetCDEHZ, while the corresponding fingerprint of total intestinal microbiota was tetBCGHYZ. Interestingly, the tet fingerprints in geographically distant waste lagoons were identical (tetBCEHYZ) and were similar to the fecal fingerprint at the third location mentioned above. Despite the sporadic detection of chlortetracycline in waste lagoons, no auxiliary diversity of tet genes in comparison with the fecal diversity could be detected, suggesting that the tet pool is generated mainly in the gut of tetracycline-fed animals, with a negligible contribution from selection imposed by tetracycline that is released into the environment. The tet efflux genes were found to be percolating into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. With yet another family of tet genes, this study confirmed our earlier findings that the antibiotic resistance gene pool generated in animal production systems may be mobile and persistent in the environment with the potential to enter the food chain. | 2002 | 11916697 |
| 3773 | 12 | 0.9990 | Understanding the rapid spread of antimicrobial resistance genes mediated by IS26. Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656 translocatable IS 26 -bounded units with ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that IS 26 -bounded units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance. | 2024 | 38827508 |
| 1778 | 13 | 0.9990 | Four novel resistance integron gene-cassette occurrences in bacterial isolates from zhenjiang, china. Integrons, which are widely distributed among bacteria and are strongly associated with resistance, are specialized genetic elements that are capable of capturing, integrating, and mobilizing gene cassette. In this work, we investigated classes 1, 2, and 3 integrons associated integrases genes in 365 bacteria isolates, amplified and analyzed the structure of class 1 integron, detected 8 resistant gene cassettes [dfr17, aadA5, aadA1, aadA2, dhfrI, aadB, aac(6')-II, and pse-I], and found four novel gene-cassette arrays. We also found that commensal bacteria in the common microenvironment had the same integron gene cassette, which provided direct evidence that integron was an important horizontal transmission element. | 2009 | 19365688 |
| 2829 | 14 | 0.9990 | Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. The prevalence of selected streptomycin (Sm)-resistance genes, i.e. aph (3''), aph (6)-1d, aph (6)-1c, ant (3'') and ant (6), was assessed in a range of pristine as well as polluted European habitats. These habitats included bulk and rhizosphere soils, manure from farm animals, activated sludge from wastewater treatment plants and seawater. The methods employed included assessments of the prevalence of the genes in habitat-extracted DNA by PCR, followed by hybridisation with specific probes, Sm-resistant culturable bacteria and exogenous isolation of plasmids carrying Sm-resistance determinants. The direct DNA-based analysis showed that aph (6)-1d genes were most prevalent in the habitats examined. The presence of the other four Sm-modifying genes was demonstrated in 58% of the tested habitats. A small fraction of the bacterial isolates (8%) did not possess any of the selected Sm-modifying genes. These isolates were primarily obtained from activated sludge and manure. The presence of Sm-modifying genes in the isolates often coincided with the presence of IncP plasmids. Exogenous isolation demonstrated the presence of plasmids of 40-200 kb in size harbouring Sm-resistance genes from all the environments tested. Most plasmids were shown to carry the ant (3'') gene, often in combination with other Sm-resistance genes, such as aph (3'') and aph (6)-1d. The most commonly found Sm-modifying gene on mobile genetic elements was ant (3''). Multiple Sm-resistance genes on the same genetic elements appeared to be the rule rather than the exception. It is concluded that Sm-resistance genes are widespread in the environmental habitats studied and often occur on mobile genetic elements and ant (3'') was most often encountered. | 2002 | 19709288 |
| 3846 | 15 | 0.9990 | Prevalence of multi-resistant plasmids in hospital inhalable particulate matter (PM) and its impact on horizontal gene transfer. Antibiotic resistance is exacerbated by the exchange of antibiotic resistance genes (ARGs) between microbes from diverse habitats. Plasmids are important ARGs mobile elements and are spread by horizontal gene transfer (HGT). In this study, we demonstrated the presence of multi-resistant plasmids from inhalable particulate matter (PM) and its effect on gene horizontal transfer. Three transferable multi-resistant plasmids were identified from PM in a hospital, using conjugative mating assays and nanopore sequencing. pTAir-3 contained 26 horizontal transfer elements and 10 ARGs. Importantly pTAir-5 harbored carbapenem resistance gene (blaOXA) which shows homology to plasmids from human and pig commensal bacteria, thus indicating that PM is a media for antibiotic resistant plasmid spread. In addition, 125 μg/mL PM(2.5) and PM(10) significantly increased the conjugative transfer rate by 110% and 30%, respectively, and augmented reactive oxygen species (ROS) levels. Underlying mechanisms were revealed by identifying the upregulated expressional levels of genes related to ROS, SOS, cell membranes, pilus generation, and transposition via genome-wide RNA sequencing. The study highlights the airborne spread of multi-resistant plasmids and the impact of inhalable PM on the horizontal transfer of antibiotic resistance. | 2021 | 33341549 |
| 4527 | 16 | 0.9990 | Study on the excision and integration mediated by class 1 integron in Enterococcus faecalis. Recognized as a mobile genetic element, integron is correlated to the excision and integration of exogenous genes, especially bacterial resistance genes. However, most of the investigations focused on Gram-positive bacteria with few exceptions. In this study, Enterococcus faecalis was selected to investigate the excision and integration of class 1 integron. A total of eight plasmids were subjected to establish the transformants for excision and integration test. As results showed, positive excision assay was observed, which had been confirmed by the further integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes should raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Enterococcus. | 2017 | 28390978 |
| 3553 | 17 | 0.9990 | Genetic redundancy and persistence of plasmid-mediated trimethoprim/sulfamethoxazole resistant effluent and stream water Escherichia coli. Antibiotic resistant bacteria may persist in effluent receiving surface water in the presence of low (sub-inhibitory) antibiotic concentrations if the bacteria possess multiple genes encoding resistance to the same antibiotic. This redundancy of antibiotic resistance genes may occur in plasmids harboring conjugation and mobilization (mob) and integrase (intI) genes. Plasmids extracted from 76 sulfamethoxazole-trimethoprim resistant Escherichia coli originally isolated from effluent and an effluent-receiving stream were used as DNA template to identify sulfamethoxazole (sul) and trimethoprim (dfr) resistances genes plus detect the presence of intI and mob genes using PCR. Sulfamethoxazole and trimethoprim resistance was plasmid-mediated with three sul (sul1, sul2 and sul3 genes) and four dfr genes (dfrA12, dfrA8, dfrA17, and dfrA1 gene) the most prevalently detected. Approximately half of the plasmids carried class 1 and/or 2 integron and, although unrelated, half were also transmissible. Sampling site in relationship to effluent input significantly affected the number of intI and mob but not the number of sul and dfr genes. In the presence of low (sub-inhibitory) sulfamethoxazole concentration, isolates persisted regardless of integron and mobilization gene designation, whereas in the presence of trimethoprim, the presence of both integron and mobilization genes made isolates less persistent than in the absence of both or the presence of a gene from either group individually. Regardless, isolates persisted in large concentrations throughout the experiment. Treated effluent containing antibiotic resistant bacteria may be an important source of integrase and mobilization genes into the stream environment. Sulfamethoxazole-trimethoprim resistant bacteria may have a high degree of genetic redundancy and diversity carrying resistance to each antibiotic, although the role of integrase and mobilization genes towards persistence is unclear. | 2016 | 27455416 |
| 1771 | 18 | 0.9990 | Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewater treatment plant. The role of a municipal wastewater treatment plant as a reservoir for bacteria carrying antibiotic resistance plasmids was analysed. Altogether, ninety-seven different multiresistance plasmids were isolated and screened by PCR for the presence of class 1 integron-specific sequences. Twelve of these plasmids were identified to carry integrons. In addition, integron-specific sequences were found on plasmid-DNA preparations from bacteria residing in activated sludge and in the final effluents of the wastewater treatment plant. Sequencing and annotation of the integrons identified nineteen different gene cassette arrays, containing twenty-one different resistance gene cassettes. These cassettes carry genes encoding eight different aminoglycoside-modifying enzymes, seven dihydrofolate reductases, three beta-lactamases, two chloramphenicol resistance proteins and two small exporter proteins. Moreover, new gene cassettes and cassettes with unknown function were identified. Eleven gene cassette combinations are described for the first time. Six integron-associated gene cassette arrays are located on self-transmissible, putative broad-host-range plasmids belonging to the IncP group. Hybridisation analyses, using the integron-specific gene cassette arrays as templates and labelled plasmid-DNA preparations from bacteria of the final effluents as hybridisation probes, revealed that bacteria containing integron-specific sequences on plasmids are released into the environment. | 2003 | 19719593 |
| 4530 | 19 | 0.9990 | Novel conjugative transferable multiple drug resistance plasmid pAQU1 from Photobacterium damselae subsp. damselae isolated from marine aquaculture environment. The emergence of drug-resistant bacteria is a severe problem in aquaculture. The ability of drug resistance genes to transfer from a bacterial cell to another is thought to be responsible for the wide dissemination of these genes in the aquaculture environment; however, little is known about the gene transfer mechanisms in marine bacteria. In this study, we show that a tetracycline-resistant strain of Photobacterium damselae subsp. damselae, isolated from seawater at a coastal aquaculture site in Japan, harbors a novel multiple drug resistance plasmid. This plasmid named pAQU1 can be transferred to Escherichia coli by conjugation. Nucleotide sequencing showed that the plasmid was 204,052 base pairs and contained 235 predicted coding sequences. Annotation showed that pAQU1 did not have known repA, suggesting a new replicon, and contained seven drug resistance genes: bla(CARB-9)-like, floR, mph(A)-like, mef(A)-like, sul2, tet(M) and tet(B). The plasmid has a complete set of genes encoding the apparatus for the type IV secretion system with a unique duplication of traA. Phylogenetic analysis of the deduced amino acid sequence of relaxase encoded by traI in pAQU1 demonstrated that the conjugative transfer system of the plasmid belongs to MOB(H12), a sub-group of the MOB(H) plasmid family, closely related to the IncA/C type of plasmids and SXT/R391 widely distributed among species of Enterobacteriaceae and Vibrionaceae. Our data suggest that conjugative transfer is involved in horizontal gene transfer among marine bacteria and provide useful insights into the molecular basis for the dissemination of drug resistance genes among bacteria in the aquaculture environment. | 2012 | 22446310 |