# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2991 | 0 | 1.0000 | Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals. | 2023 | 37317052 |
| 2962 | 1 | 0.9991 | Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species. | 2017 | 29254727 |
| 1303 | 2 | 0.9989 | Isolation and Characterization of Antimicrobial-Resistant Escherichia coli from Retail Meats from Roadside Butcheries in Uganda. Retail meats are one of the main routes for spreading antimicrobial-resistant bacteria (ARB) from livestock to humans through the food chain. In African countries, retail meats are often sold at roadside butcheries without chilling or refrigeration. Retail meats in those butcheries are suspected to be contaminated by ARB, but it was not clear. In this study, we tested for the presence of antimicrobial-resistant Escherichia coli from retail meats (n = 64) from roadside butcheries in Kampala, Uganda. The meat surfaces were swabbed and inoculated on PetriFilm SEC agar to isolate E. coli. We successfully isolated E. coli from 90.6% of these retail meat samples. We identified the phylogenetic type, antimicrobial susceptibility, and antimicrobial resistance genes prevalence between retail meat isolates (n = 89). Phylogenetic type B1 was identified from 70.8% of the retail meat isolates, suggesting that the isolates originated primarily from fecal contamination during meat processing. Tetracycline (TET)-resistant isolates with tetA and/or tetB gene(s) were the most frequently detected (28.1%), followed by ampicillin (AMP) resistance genes with bla(TEM) (15.7%,) and sulfamethoxazole-trimethoprim (SXT) resistance genes with sul2 (15.7%). No extended-spectrum beta-lactamase-producing isolates were detected. A conjugation assay showed that resistance to AMP, TET, and SXT could be simultaneously transferred to recipients. These findings suggest that antimicrobial-resistant E. coli can easily be transferred from farms to tables from retail meats obtained from roadside butcheries. | 2020 | 32551973 |
| 2963 | 3 | 0.9988 | Migratory Wild Birds as a Potential Disseminator of Antimicrobial-Resistant Bacteria around Al-Asfar Lake, Eastern Saudi Arabia. Migratory wild birds acquire antimicrobial-resistant (AMR) bacteria from contaminated habitats and then act as reservoirs and potential spreaders of resistant elements through migration. However, the role of migratory wild birds as antimicrobial disseminators in the Arabian Peninsula desert, which represents a transit point for birds migrating all over Asia, Africa, and Europe not yet clear. Therefore, the present study objective was to determine antimicrobial-resistant bacteria in samples collected from migratory wild birds around Al-Asfar Lake, located in Al-Ahsa Oasis, Eastern Saudi Arabia, with a particular focus on Escherichia coli virulence and resistance genes. Cloacal swabs were collected from 210 migratory wild birds represent four species around Al-Asfar. E. coli, Staphylococcus, and Salmonella spp. have been recovered from 90 (42.9%), 37 (17.6%), and 5 (2.4%) birds, respectively. Out of them, 19 (14.4%) were a mixed infection. All samples were subjected to AMR phenotypic characterization, and results revealed (14-41%) and (16-54%) of E. coli and Staphylococcus spp. isolates were resistant to penicillins, sulfonamides, aminoglycoside, and tetracycline antibiotics. Multidrug-resistant (MDR) E. coli and Staphylococcus spp. were identified in 13 (14.4%) and 7 (18.9%) isolates, respectively. However, none of the Salmonella isolates were MDR. Of the 90 E. coli isolates, only 9 (10%) and 5 (5.6%) isolates showed the presence of eaeA and stx2 virulence-associated genes, respectively. However, both eaeA and stx2 genes were identified in four (4.4%) isolates. None of the E. coli isolates carried the hlyA and stx1 virulence-associated genes. The E. coli AMR associated genes bla(CTX-M), bla(TEM), bla(SHV), aac(3)-IV, qnrA, and tet(A) were identified in 7 (7.8%), 5 (5.6%), 1 (1.1%), 8 (8.9%), 4 (4.4%), and 6 (6.7%) isolates, respectively. While the mecA gene was not detected in any of the Staphylococcus spp. isolates. Regarding migratory wild bird species, bacterial recovery, mixed infection, MDR, and AMR index were relatively higher in aquatic-associated species. Overall, the results showed that migratory wild birds around Al-Asfar Lake could act as a reservoir for AMR bacteria enabling them to have a potential role in maintaining, developing, and disseminating AMR bacteria. Furthermore, results highlight the importance of considering migratory wild birds when studying the ecology of AMR. | 2021 | 33807576 |
| 2714 | 4 | 0.9988 | Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella terrigena carrying a bla(SHV-2) and 1 Citrobacter freundii isolate with a qnrB9 gene. Among Enterococcus (n=108; 35 samples; Enterococcus casseliflavus--40, Enterococcus faecalis--20, Enterococcus faecium--18, Enterococcus hirae--9, Enterococcus gallinarum--5, and Enterococcus spp.--16) resistance was detected for tetracyclines [6%; tet(M) and/or tet(L)], erythromycin [3%; erm(B)], nitrofurantoin (1%) or ciprofloxacin (1%). The present study places ready-to-eat salads within the spectrum of ecological niches that may be vehicles for antibiotic resistance bacteria/genes with clinical interest (e.g. E. coli-D-ST69; bla(SHV-2)) and these findings are worthy of attention as their spread to humans by ingestion cannot be dismissed. | 2013 | 24036261 |
| 1317 | 5 | 0.9988 | Antibiotic resistance and virulence genes profile of Non typhodial Salmonella species isolated from poultry enteritis in India. Salmonella species (spp) is the most important gastrointestinal pathogen present ubiquitously. Non typhoidal Salmonella (NTS) is commonly associated with gastroenteritis in humans. Layer birds once get infection with NTS, can become persistently infected with Salmonella Typhimurium and intermittently shed the bacteria. It results in a high risk of potential exposure of eggs to the bacteria. The current study was conducted to determine the serotype diversity, presence of virulence genes, antibiotic resistance pattern, and genes of NTS from poultry enteritis. Out of 151 intestinal swabs from poultry total 118 NTS were isolated, which were characterized serologically as S. Typhimurium (51 strains), S. Weltevreden (57 strains) and untypable (10 strains). Most effective antibiotics were amikacin, gentamycin and ceftriaxone (33.05%) followed by ampicillin, azithromycin and ciprofloxacin (16.69%), co-trimoxazole (13.55%), and tetracycline (6.78%). Multidrug resistance recorded in 17.70% (N = 21/118) strains. Antimicrobial-resistant genes i.e. blaTEM, blaSHV, blaCTX-M, tet(A), tet(B), tet(C), sul1, sul2, sul3. blaTEM and tet(A) were present in 95% (20/21). Eleven virulence genes i.e. invA, hilA, sivH, tolC, agfA, lpfA, spaN, pagC, spiA, iroN and fliC 2 were present in all the 30 isolates. While, sopE was present in only 2 isolates, NTS strains with characteristics of pathogenicity and multidrug resistance from poultry enteritis were detected. Multidrug resistance showed the necessity of prudent use of antibiotics in the poultry industry. | 2024 | 38430331 |
| 2675 | 6 | 0.9988 | Prevalence and Zoonotic Risk of Multidrug-Resistant Escherichia coli in Bovine Subclinical Mastitis Milk: Insights Into the Virulence and Antimicrobial Resistance. The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve E. coli, which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing E. coli (STEC) isolated from SCM milk. SCM-positive bovine milk was subjected to E. coli detection using cultural, biochemical, and molecular methods. Further, we detected STEC virulence genes including stx1, stx2, and eaeA. STEC isolates were tested for ARGs including blaSHV, CITM, tetA, and aac(3)-IV, and underwent antimicrobial susceptibility tests. Moreover, we performed a phylogenetic analysis of the stx1 gene of MDR-STEC. SCM was detected in 47.2% of milk samples of which 50.54% were E. coli positive. About 17.20% of E. coli isolates contained STEC virulence genes, and stx2 was the most prevalent. Moreover, all STEC isolates harbored at least one of the ARGs, while about 43.75% of the isolates carried multiple ARGs. Additionally, all the STEC isolates showed multidrug resistance, and were found to be fully resistant against amoxicillin, followed by ampicillin (87.50%) and gentamycin (75%); and were mostly sensitive to aztreonam (81.25%) and meropenem (68.75%). In phylogeny analysis, the stx1 gene of isolated MDR-STEC showed close relatedness with disease-causing non-O157 and O157 strains of different sources including cattle, humans, and food. | 2025 | 39816483 |
| 2647 | 7 | 0.9988 | Antibiotic Susceptibility and Virulence Factors in Escherichia coli from Sympatric Wildlife of the Apuan Alps Regional Park (Tuscany, Italy). Today a growing number of studies are focusing on antibiotic resistance in wildlife. This is due to the potential role of wild animals as reservoirs and spreaders of pathogenic and resistant bacteria. This study focused on isolating and identifying Escherichia coli from the feces of wild animals living in the Apuan Alps Regional Park (Tuscany, Italy) and evaluating some of their antibiotic resistance and pathogenicity traits. Eighty-five fecal samples from different species were studied. Seventy-one E. coli were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry analysis, subjected to antibiograms and polymerase chain reaction for the detection of antibiotic resistance genes and pathogenicity factors. The highest resistance rates were found against cephalothin (39.4%) and ampicillin (33.8%), followed by amoxicillin/clavulanic acid (15.5%), streptomycin (12.7%), and tetracycline (5.6%). Regarding resistance genes, 39.4% of the isolates were negative for all tested genes. The remaining isolates were positive for bla(CMY)(-2), sul2, strA-strB and aadA1, tet(B), and tet(A), encoding resistance to beta-lactams, trimethoprim/sulfamethoxazole, streptomycin, and tetracycline, respectively. With regard to virulence factors, 63.4% of the isolates were negative for all genes; 21.1% carried astA alone, which is associated with different pathotypes, 9.9% carried both escV and eaeA (aEPEC); single isolates (1.4%) harbored escV (aEPEC), escV associated with astA and eaeA (aEPEC), astA with stx2 and hlyA (EHEC) or astA and stx1, stx2, and hlyA (EHEC). These results show that wildlife from nonanthropized environments can be a reservoir for antibiotic-resistant microorganisms and suggest the need for a deeper knowledge on their origin and diffusion mechanisms through different ecological niches. | 2019 | 30676273 |
| 1371 | 8 | 0.9988 | Presence of antimicrobial resistance in coliform bacteria from hatching broiler eggs with emphasis on ESBL/AmpC-producing bacteria. Antimicrobial resistance is recognized as one of the most important global health challenges. Broilers are an important reservoir of antimicrobial resistant bacteria in general and, more particularly, extended-spectrum β-lactamases (ESBL)/AmpC-producing Enterobacteriaceae. Since contamination of 1-day-old chicks is a potential risk factor for the introduction of antimicrobial resistant Enterobacteriaceae in the broiler production chain, the presence of antimicrobial resistant coliform bacteria in broiler hatching eggs was explored in the present study. Samples from 186 hatching eggs, collected from 11 broiler breeder farms, were inoculated on MacConkey agar with or without ceftiofur and investigated for the presence of antimicrobial resistant lactose-positive Enterobacteriaceae, particularly, ESBL/AmpC-producers. Escherichia coli and Enterobacter cloacae were obtained from the eggshells in 10 out of 11 (10/11) sampled farms. The majority of the isolates were recovered from crushed eggshells after external decontamination suggesting that these bacteria are concealed from the disinfectants in the egg shell pores. Antimicrobial resistance testing revealed that approximately 30% of the isolates showed resistance to ampicillin, tetracycline, trimethoprim and sulphonamides, while the majority of isolates were susceptible to amoxicillin-clavulanic acid, nitrofurantoin, aminoglycosides, florfenicol, neomycin and apramycin. Resistance to extended-spectrum cephalosporins was detected in eight Enterobacteriaceae isolates from five different broiler breeder farms. The ESBL phenotype was confirmed by the double disk synergy test and blaSHV-12, blaTEM-52 and blaACT-39 resistance genes were detected by PCR. This report is the first to present broiler hatching eggs as carriers and a potential source of ESBL/AmpC-producing Enterobacteriaceae for broiler chicks. | 2016 | 27011291 |
| 1282 | 9 | 0.9987 | Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3')-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society. | 2021 | 34072543 |
| 1318 | 10 | 0.9987 | Assessing the Public Health Implications of Virulent and Antibiotic-Resistant Bacteria in Côte d'Ivoire's Ready-to-Eat Salads. In Côte d'Ivoire, the popularity of ready-to-eat salads has grown substantially. Despite their convenience, these products often face criticism for their microbiological safety. This research was conducted to assess the virulence and antibiotic resistance profiles of Escherichia coli (E. coli), Salmonella spp., and Staphylococcus aureus (S. aureus) isolated from salads available in hypermarkets across Abidjan. The study utilized a combination of microbiological and molecular biology techniques. Results indicated that E. coli isolates harbored virulence genes such as stx2 (50%) and ST (62.50%), though genes stx1 and LT were absent in the samples tested. In S. aureus, virulence genes detected included sea (55.55%), sec (11.110%), and sed (44.44%). The antibiotic resistance assessment revealed high resistance in E. coli to β-lactam antibiotics, with all isolates resistant to cefuroxime (100%) and the majority to ampicillin and cefoxitin (87.5%). Most Salmonella spp. isolates were sensitive to the antibiotics tested, except for cefoxitin and ampicillin, showing resistance rates of 42.85% and 57.15%, respectively. Staphylococcus aureus demonstrated considerable resistance, particularly to cefoxitin (44.44%), benzylpenicillin (100%), and ampicillin (55.55%). In addition, resistance to aminoglycosides (55.55% to both kanamycin and gentamicin) and macrolides (66.66% to erythromycin and 55.55% to clindamycin) was noted. Resistance to various fluoroquinolones ranged between 33.33% and 55.55%. The presence of resistance genes such as blaTEM (10.52%), qnrA (2.26%), qnrB (5.26%), qnrS (5.26%), and mecA (13.15%) in E. coli and S. aureus underscores the challenge of multidrug resistance, exhibiting phenotypes such as ESBL (50%), Meti-R (55.55%), KTG (44.44%), MLSB (44.44%), and FQ-R (25%). These results carry significant epidemiological and public health implications, highlighting the urgent need for improved safety regulations and practices regarding ready-to-eat salads in urban food markets. | 2024 | 39139471 |
| 1364 | 11 | 0.9987 | Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria. | 2007 | 17536933 |
| 2944 | 12 | 0.9987 | Antimicrobial Resistance in Wildlife: Implications for Public Health. The emergence and spread of antimicrobial-resistant (AMR) bacteria in natural environments is a major concern with serious implications for human and animal health. The aim of this study was to determine the prevalence of AMR Escherichia coli (E. coli) in wild birds and mammalian species. Thirty faecal samples were collected from each of the following wildlife species: herring gulls (Larus argentatus), black-headed gulls (Larus ridibundus), lesser black-back gulls (Larus fuscus), hybrid deer species (Cervus elaphus x Cervus nippon) and twenty-six from starlings (Sturnus vulgaris). A total of 115 E. coli isolates were isolated from 81 of 146 samples. Confirmed E. coli isolates were tested for their susceptibility to seven antimicrobial agents by disc diffusion. In total, 5.4% (8/146) of samples exhibited multidrug-resistant phenotypes. The phylogenetic group and AMR-encoding genes of all multidrug resistance isolates were determined by PCR. Tetracycline-, ampicillin- and streptomycin-resistant isolates were the most common resistant phenotypes. The following genes were identified in E. coli: bla(TEM), strA, tet(A) and tet(B). Plasmids were identified in all samples that exhibited multidrug-resistant phenotypes. This study indicates that wild birds and mammals may function as important host reservoirs and potential vectors for the spread of resistant bacteria and genetic determinants of AMR. | 2015 | 25639901 |
| 2138 | 13 | 0.9987 | Isolation and molecular identification of multidrug-resistant Escherichia coli strains isolated from mastitic cows in Egypt. BACKGROUND: Mastitis is a common disease that affects the dairy sector globally because it not only impacts animal welfare but can also lead to significant financial losses. AIM: This study examined the phenotypic and genotypic profiles of the multidrug-resistant (MDR) Escherichia coli (E. coli) strains that were isolated from mastitic cows in Egypt to detect their pattern of antibiotic resistance. METHODS: Four hundred native breed lactating cows were evaluated to identify clinical and subclinical mastitis. A total of 100 mastitic milk samples (64 from clinical mastitis and 36 from subclinical mastitis) were collected for phenotypic isolation and identification of coliform bacteria. Escherichia coli isolates were identified through their morphological features, Gram staining, and biochemical tests. The identified E. coli strains were examined against various antibiotics using disk diffusion methods. All E. coli strains were analyzed for the antibiotic resistance genes Streptomycin (aadA), blaTEM, Tetracycline (tetA), Sulfonamides, and qnrA using PCR. RESULTS: Among 400 examined dairy cows, the prevalences of clinical and subclinical mastitis were 16% and 9%, respectively. Bacteriological isolation of coliform bacteria from mastitic milk samples revealed that E. coli was the most prevalent bacterium. Among 10 isolates of biochemically verified E. coli strains, 8 (80%) were MDR across 6 distinct classes of antibiotics. All recovered E. coli strains exhibited higher resistance to Amoxicillin, Cefotaxime, Sulphamethaxzole/Trimethoprim, and Tetracycline. High susceptibility was noticed to Ciprofloxaccin, Amoxicillin+Clavulinic, Streptomycin, Gentamicin, Chloramphenicol, and Colistin. The blaTEM gene was among the most common antibiotic resistance genes found in E. coli isolates (100%). Furthermore, the genotypes encoding resistance to tetA, aadA, and Sulfonamides were 50%, 40%, and 50%, respectively. CONCLUSION: MDR pathogenic E. coli strains are common in mastitic dairy cows in Egypt, and preventive actions must be implemented to avoid serious public health concerns. | 2025 | 40557079 |
| 2021 | 14 | 0.9987 | Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals. The presence and transfer of antimicrobial resistance genes from commensal bacteria in companion animals to more pathogenic bacteria may contribute to dissemination of antimicrobial resistance. The purpose of this study was to determine antimicrobial resistance gene content and the presence of genetic elements in antimicrobial resistant Escherichia coli from healthy companion animals. In our previous study, from May to August, 2007, healthy companion animals (155 dogs and 121 cats) from three veterinary clinics in the Athens, GA, USA area were sampled and multidrug-resistant E. coli (n = 36; MDR, resistance to ≥ 2 antimicrobial classes) were obtained. Of the 25 different plasmid replicon types tested by PCR, at least one plasmid replicon type was detected in 94% (34/36) of the MDR E. coli; four isolates contained as many as five different plasmid replicons. Nine replicon types (FIA, FIB, FII, I2, A/C, U, P, I1 and HI2) were identified with FIB, FII, I2 as the most common pattern. The presence of class I integrons (intI) was detected in 61% (22/36) of the isolates with eight isolates containing aminoglycoside- and/or trimethoprim-resistance genes in the variable cassette region of intI. Microarray analysis of a subset of the MDR E. coli (n = 9) identified the presence of genes conferring resistance to aminoglycosides (aac, aad, aph and strA/B), β-lactams (ampC, cmy, tem and vim), chloramphenicol (cat), sulfonamides (sulI and sulII), tetracycline [tet(A), tet(B), tet(C), tet(D) and regulator, tetR] and trimethoprim (dfrA). Antimicrobial resistance to eight antimicrobials (ampicillin, cefoxitin, ceftiofur, amoxicillin/clavulanic acid, streptomycin, gentamicin, sulfisoxazole and trimethoprim-sulfamethoxazole) and five plasmid replicons (FIA, FIB, FII, I1 and I2) were transferred via conjugation. The presence of antimicrobial resistance genes, intI and transferable plasmid replicons indicate that E. coli from companion animals may play an important role in the dissemination of antimicrobial resistance, particularly to human hosts during contact. | 2015 | 25653018 |
| 1369 | 15 | 0.9987 | Antimicrobial resistance genes in Escherichia coli isolates recovered from a commercial beef processing plantt. The goal of this study was to assess the distribution of antimicrobial resistance (AMR) genes in Escherichia coli isolates recovered from a commercial beef processing plant. A total of 123 antimicrobial-resistant E. coli isolates were used: 34 from animal hides, 10 from washed carcasses, 27 from conveyers for moving carcasses and meat, 26 from beef trimmings, and 26 from ground meat. The AMR genes for beta-lactamase (bla(CMY), bla(SHV), and bla(TEM), tetracycline (tet(A), tet(B), and tet(C)), sulfonamides (sul1, sul2, and sul3), and aminoglycoside (strA and strB) were detected by PCR assay. The distribution of tet(B), tet(C), sul1, bla(TEM), strA, and strB genes was significantly different among sample sources. E. coli isolates positive for the tet(B) gene and for both strA and strB genes together were significantly associated with hide, washed carcass, and ground meat samples, whereas sull gene was associated with washed carcass and beef trimming samples. The bla(TEM) gene was significantly associated with ground meat samples. About 50% of tetracycline-resistant E. coli isolates were positive for tet(A) (14%), tet(B) (15%), or tet(C) (21%) genes or both tet(B) and tet(C) genes together (3%). The sul2 gene or both sul1 and sul2 genes were found in 23% of sulfisoxazole-resistant E. coli isolates, whereas the sul3 gene was not found in any of the E. coli isolates tested. The majority of streptomycin-resistant E. coli isolates (76%) were positive for the strA and strB genes together. The bla(CMY), bla(TEM), and bla(SHV) genes were found in 12, 56, and 4%, respectively, of ampicillin-resistant E. coli isolates. These data suggest that E. coli isolates harboring AMR genes are widely distributed in meat processing environments and can create a pool of transferable resistance genes for pathogens. The results of this study underscore the need for effective hygienic and sanitation procedures in meat plants to reduce the risks of contamination with antimicrobial-resistant bacteria. | 2009 | 19517739 |
| 1201 | 16 | 0.9987 | Antimicrobial-Resistant Escherichia coli, Enterobacter cloacae, Enterococcus faecium, and Salmonella Kentucky Harboring Aminoglycoside and Beta-Lactam Resistance Genes in Raw Meat-Based Dog Diets, USA. The practice of feeding raw meat-based diets to dogs has grown in popularity worldwide in recent years. However, there are public health risks in handling and feeding raw meat-based dog diets (RMDDs) to dogs since there are no pathogen reduction steps to reduce the microbial load, which may include antimicrobial-resistant pathogenic bacteria. A total of 100 RMDDs from 63 suppliers were sampled, and selective media were used to isolate bacteria from the diets. Bacterial identification, antimicrobial susceptibility testing, and whole-genome sequencing (WGS) were conducted to identify antimicrobial resistance (AMR). The primary meat sources for RMDDs included in this study were poultry (37%) and beef (24%). Frozen-dry was the main method of product production (68%). In total, 52 true and opportunistic pathogens, including Enterobacterales (mainly Escherichia coli, Enterobacter cloacae) and Enterococcus faecium, were obtained from 30 RMDDs. Resistance was identified to 19 of 28 antimicrobials tested, including amoxicillin/clavulanic acid (23/52, 44%), ampicillin (19/52, 37%), cephalexin (16/52, 31%), tetracycline (7/52, 13%), marbofloxacin (7/52, 13%), and cefazolin (6/52, 12%). All 19 bacterial isolates submitted for WGS harbored at least one type of AMR gene. The identified AMR genes were found to mediate resistance to aminoglycoside (gentamicin, streptomycin, amikacin/kanamycin, gentamicin/kanamycin/tobramycin), macrolide, beta-lactam (carbapenem, cephalosporin), tetracycline, fosfomycin, quinolone, phenicol/quinolone, and sulfonamide. In conclusion, the results of this study suggest that feeding and handling RMDDs may pose a significant public health risk due to the presence of antimicrobial-resistant pathogens, and further research and intervention may be necessary to minimize these risks. | 2023 | 37615516 |
| 2715 | 17 | 0.9987 | From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa. Foodborne pathogens, including antibiotic-resistant species, constitute a severe menace to food safety globally, especially food animals. Identifying points of concern that need immediate mitigation measures to prevent these bacteria from reaching households requires a broad understanding of these pathogens' spread along the food production chain. We investigated the distribution, antibiotic susceptibility, molecular characterization and clonality of Enterococcus spp. in an intensive pig production continuum in South Africa, using the farm-to-fork approach. Enterococcus spp. were isolated from 452 samples obtained along the pig farm-to-fork continuum (farm, transport, abattoir, and retail meat) using the IDEXX Enterolert(®)/Quanti-Tray(®) 2000 system. Pure colonies were obtained on selective media and confirmed by real-time PCR, targeting genus- and species-specific genes. The susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion method against 16 antibiotics recommended by the WHO-AGISAR using EUCAST guidelines. Selected antibiotic resistance and virulence genes were detected by real-time PCR. Clonal relatedness between isolates across the continuum was evaluated by REP-PCR. A total of 284 isolates, consisting of 79.2% E. faecalis, 6.7% E. faecium, 2.5% E. casseliflavus, 0.4% E. gallinarum, and 11.2% other Enterococcus spp., were collected along the farm-to-fork continuum. The isolates were most resistant to sulfamethoxazole-trimethoprim (78.8%) and least resistant to levofloxacin (5.6%). No resistance was observed to vancomycin, teicoplanin, tigecycline and linezolid. E. faecium displayed 44.4% resistance to quinupristin-dalfopristin. Also, 78% of the isolates were multidrug-resistant. Phenotypic resistance to tetracycline, aminoglycosides, and macrolides was corroborated by the presence of the tetM, aph(3')-IIIa, and ermB genes in 99.1%, 96.1%, and 88.3% of the isolates, respectively. The most detected virulence gene was gelE. Clonality revealed that E. faecalis isolates belonged to diverse clones along the continuum with major REP-types, mainly isolates from the same sampling source but different sampling rounds (on the farm). E. faecium isolates revealed a less diverse profile. The results suggest that intensive pig farming could serve as a reservoir of antibiotic-resistant bacteria that could be transmitted to occupationally exposed workers via direct contact with animals or consumers through animal products/food. This highlights the need for more robust guidelines for antibiotic use in intensive farming practices and the necessity of including Enterococcus spp. as an indicator in antibiotic resistance surveillance systems in food animals. | 2021 | 33918989 |
| 1304 | 18 | 0.9986 | Serovar and sequence type distribution and phenotypic and genotypic antimicrobial resistance of Salmonella originating from pet animals in Chongqing, China. A total of 334 Salmonella isolates were recovered from 6,223 pet rectal samples collected at 50 pet clinics, 42 pet shops, 7 residential areas, and 4 plazas. Forty serovars were identified that included all strains except for one isolate that did not cluster via self-agglutination, with Salmonella Typhimurium monophasic variant, Salmonella Kentucky, Salmonella Enteritidis, Salmonella Pomona, and Salmonella Give being the predominant serovars. Fifty-one sequence types were identified among the isolates, and ST198, ST11, ST19, ST451, ST34, and ST155 were the most common. The top four dominant antimicrobials to which isolates were resistant were sulfisoxazole, ampicillin, doxycycline, and tetracycline, and 217 isolates exhibited multidrug resistance. The prevalence of β-lactamase genes in Salmonella isolates was 59.6%, and among these isolates, 185 harbored bla(TEM), followed by bla(CTX-M) (66) and bla(OXA) (10). Moreover, six PMQR genes, namely, including qnrA (4.8%), qnrB (4.2%), qnrD (0.9%), qnrS (18.9%), aac(6')-Ib-cr (16.5%), and oqxB (1.5%), were detected. QRDR mutations (76.6%) were very common in Salmonella isolates, with the most frequent mutation in parC (T57S) (47.3%). Furthermore, we detected six tetracycline resistance genes in 176 isolates, namely, tet(A) (39.5%), tet(B) (8.1%), tet(M) (7.7%), tet(D) (5.4%), tet(J) (3.3%), and tet(C) (1.8%), and three sulfonamide resistance genes in 303 isolates, namely, sul1 (84.4%), sul2 (31.1%), and sul3 (4.2%). Finally, we found 86 isolates simultaneously harboring four types of resistance genes that cotransferred 2-7 resistance genes to recipient bacteria. The frequent occurrence of antimicrobial resistance, particularly in dogs and cats, suggests that antibiotic misuse may be driving multidrug-resistant Salmonella among pets.IMPORTANCEPet-associated human salmonellosis has been reported for many years, and antimicrobial resistance in pet-associated Salmonella has become a serious public health problem and has attracted increasing attention. There are no reports of Salmonella from pets and their antimicrobial resistance in Chongqing, China. In this study, we investigated the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella strains isolated from pet fecal samples in Chongqing. In addition, β-lactamase, QRDR, PMQR, tetracycline and sulfonamide resistance genes, and mutations in QRDRs in Salmonella isolates were examined. Our findings demonstrated the diversity of serovars and sequence types of Salmonella isolates. The isolates were widely resistant to antimicrobials, notably with a high proportion of multidrug-resistant strains, which highlights the potential direct or indirect transmission of multidrug-resistant Salmonella from pets to humans. Furthermore, resistance genes were widely prevalent in the isolates, and most of the resistance genes were spread horizontally between strains. | 2024 | 38757951 |
| 1308 | 19 | 0.9986 | Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the bla(CMY-2) and bla(TEM-1) genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits. | 2019 | 31842593 |