# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2974 | 0 | 1.0000 | Diversity of Virulence Genes in Multidrug Resistant Escherichia coli from a Hospital in Western China. BACKGROUND: Escherichia coli strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal E. coli can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize E. coli strains from a hospital in western China to determine their virulence and antimicrobial resistance potential. METHODS: A total of 97 E. coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study. RESULTS: The frequency of occurrence of the virulence genes fimC, irp2, fimH, fyuA, lpfA, hlyA, sat, and cnf1 in the E. coli isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all E. coli isolates were multidrug resistant and had a high degree of antimicrobial resistance. CONCLUSION: These results indicate a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug resistant E. coli isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals. | 2019 | 31824179 |
| 2973 | 1 | 0.9999 | An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico. | 2018 | 30041652 |
| 2972 | 2 | 0.9999 | Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella. | 2018 | 29684574 |
| 1145 | 3 | 0.9999 | Abundance of Mobilized Colistin Resistance Gene (mcr-1) in Commensal Escherichia coli from Diverse Sources. Aims: Antimicrobial resistance (AMR) spreads not only by pathogenic but also by commensal bacteria, and the latter can become a reservoir for resistance genes. This study was aimed to investigate the AMR patterns along with the presence of mobilized colistin resistance (mcr) genes in commensal Escherichia coli circulating in chickens, farm environments, street foods, and human patients. Materials and Methods: By a cross-sectional survey, isolates obtained from 530 samples were tested for their AMR profiles against 9 antimicrobials. Minimum inhibitory concentration (MIC) of the phenotypically colistin-resistant isolates was determined and screened for a set of mcr genes followed by sequencing of mcr-1 gene in the multidrug-resistant (MDR) isolates. Results: A total of 313 E. coli strains were isolated and confirmed by polymerase chain reaction. Antimicrobial susceptibility testing revealed that about 98% (confidence interval [95% CI] 95-99) of the isolates were MDR, and 58% (95% CI 52-63) isolates exhibited resistance to colistin. MIC values of colistin against the isolates ranged from 4 to 64 mg/L. Except for human patients, 20.4% colistin-resistant isolates from other sources of isolation had mcr-1 gene. Conclusions: There is abundance of commensal MDR E. coli strains with the acquisition of mcr-1 gene circulating in chickens and farm environments in Bangladesh. | 2021 | 33909471 |
| 2668 | 4 | 0.9999 | Genotyping and distribution of putative virulence factors and antibiotic resistance genes of Acinetobacter baumannii strains isolated from raw meat. BACKGROUND: Acinetobacter baumannii strains with multiple antimicrobial resistance are primarily known as opportunistic nosocomial bacteria but they may also be regarded as emerging bacterial contaminants of food samples of animal origin. Here we aimed to study the molecular characteristics of the A. baumanni strains isolated from raw meat samples. METHODS: A total of 22 A. baumanni strains were isolated from 126 animal meat samples and were genotyped by ERIC-PCR method and by PCR detection of their virulence and antimicrobial resistance determinants. A. baumannii strains with 80% and more similarities were considered as one cluster. RESULTS: Sixteen different genetic clusters were found amongst the 22 A. baumanni strains. Of the 22 strains, 12 (54.54%) had similar genetic cluster. A. baumannii strains exhibited the highest percentage of resistance against tetracycline (90.90%), trimethoprim (59.09%), cotrimoxazole (54.54%) and gentamicin (50.00%). TetA (81.81%), tetB (72.72%), dfrA1 (63.63%), aac(3)-IV (63.63%), sul1 (63.63%) and aadA1 (45.45%) were the most commonly detected antibiotic resistance genes. FimH (81.81%), afa/draBC (63.63%), csgA (63.63%), cnf1 (59.09%), cnf2 (54.54%) and iutA (50.00%) were the most commonly detected virulence factors. A. baumannii strains isolated from the chicken meat samples had the highest similarities in the genetic cluster. CONCLUSIONS: A. baumannii strains with similar genetic cluster (ERIC-Type) had the same prevalence of antibiotic resistance, antibiotic resistance genes and virulence factors. Genetic cluster of the A. baumannii strains is the main factor affected the similarities in the genotypic and phenotypic properties of the A. baumannii strains. | 2018 | 30323923 |
| 2151 | 5 | 0.9999 | Study of the Genomic Characterization of Antibiotic-Resistant Escherichia Coli Isolated From Iraqi Patients with Urinary Tract Infections. Urinary tract infection is one of the last diseases prevalent in humans, with various causative agents affecting 250 million people annually, This study analyzed UTIs in Iraqi patients caused by Escherichia coli. ESBL enzymes contribute to antibiotic resistance. The research aimed to analyze ESBL gene frequency, resistance patterns, and genetic diversity of E. coli strains; Between Dec 2020 and May 2021, 200 urine samples were collected, cultured on blood agar, EMB, and MacConkey's plates, samples incubated at 37 °C for 24 h. Positive samples (> 100 cfu/ml) underwent Kirby-Bauer and CLSI antibiotic susceptibility testing. PCR detected virulence genes, Beta-lactamase coding genes, and biofilm-associated resistance genes in E. coli isolates; Out of 200 isolates, 80% comprised Gram-positive and Gram-negative bacteria. Specifically, 120 isolates (60%) were Gram-negative, while 40 isolates (20%) were Gram-positive. Among Gram-negative isolates, 20% were identified as E. coli. Remarkably, all E. coli strains showed resistance to all tested antibiotics, ranging from 80 to 95% resistance. The E. coli isolates harbored three identified resistance genes: blaTEM, blaSHV, and blaCTXM. Regarding biofilm production, 10% showed no formation, 12% weak formation, 62% moderate formation, and 16% strong formation; our study found that pathogenic E. coli caused 20% of UTIs. The majority of studied E. coli strains from UTI patients carried the identified virulence genes, which are vital for infection development and persistence. | 2024 | 39011020 |
| 2676 | 6 | 0.9999 | Characterization of commensal Escherichia coli isolates from slaughtered sheep in Mexico. INTRODUCTION: Commensal Escherichia coli is defined as bacteria without known virulence factors that could be playing a specific role in some diseases; however, they could be responsible to disseminate antimicrobial resistance genes to other microorganisms. This study aimed to characterize the commensal E. coli isolates obtained from slaughtered sheep in the central region of Mexico. METHODOLOGY: Isolates were classified as commensal E. coli when distinctive genes related to diarrheagenic pathotypes (stx1, stx2, eae, bfp, LT, stp, ipaH, and aggR) were discarded by PCR. Identification of serotype, phylogenetic group, and antimicrobial resistance was also performed. RESULTS: A total of 41 isolates were characterized. The phylogenetic groups found were B1 in 37 isolates (90.2%), A in 2 (4.8%), and 1 isolate (2.4%) for C and D groups. Serotypes associated with diarrhea in humans (O104:H2 and O154:NM) and hemolytic uremic syndrome (O8:NM) were detected. Thirty-three isolates (80%) were resistant to ceftazidime, 23 (56%), to tetracycline 8 (19.5%) to ampicillin, and 1 to amikacin. Six isolates (14.6%) were multidrug-resistant. CONCLUSIONS: This study provides new information about commensal E. coli in slaughtered sheep, high percentages of resistance to antibiotics, and different profiles of antimicrobial resistance were found, their dissemination constitute a risk factor towards the consuming population. | 2021 | 34898507 |
| 2667 | 7 | 0.9999 | Prevalence, virulence and antimicrobial resistance patterns of Aeromonas spp. isolated from children with diarrhea. BACKGROUND: Aeromonas spp. cause various intestinal and extraintestinal diseases. These bacteria are usually isolated from fecal samples, especially in children under five years old. The aim of this study was to assess the prevalence of Aeromonas spp. and their antimicrobial resistance profile in children with diarrhea referred to the Children Medical Center in Tehran, between 2013 and 2014. METHODS: A total number of 391 stool samples were collected from children with ages between 1 day and 14 years old, with diarrhea (acute or chronic), referred to the Children Hospital, Tehran, Iran, between 2013 and 2014. Samples were enriched in alkaline peptone water broth for 24 hours at 37 °C and then cultured. Suspicious colonies were analyzed through biochemical tests. Furthermore, antimicrobial susceptibility tests were carried out for the isolates. Isolates were further studied for act, ast, alt, aerA and hlyA virulence genes using polymerase chain reaction. RESULTS: In total, 12 isolates (3.1%) were identified as Aeromonas spp.; all were confirmed using the API-20E test. Of these isolates, five A. caviae (42%), four A. veronii (33%) and three A. hydrophila (25%) were identified in cases with gastroenteritis. Second to ampicillin (which was included in the growth medium used), the highest rate of antimicrobial resistance was seen against nalidixic acid and trimethoprim-sulfamethoxazole (5 isolates each, 41.6%) and the lowest rate of antimicrobial resistance was seen against gentamicin, amikacin and cefepime (none of the isolates). Results included 76.4% act, 64.7% ast, 71.5% alt, 83.3% aerA and 11.7% hlyA genes. CONCLUSION: Aeromonas spp. are important due to their role in diarrhea in children; therefore, isolation and identification of these fecal pathogens should seriously be considered in medical laboratories. Since virulence genes play a significant role in gastroenteritis symptoms caused by these bacteria, Aeromonas species that include virulence genes are potentially suspected to cause severe infections. Moreover, bacterial antimicrobial resistance is increasing, especially against trimethoprim-sulfamethoxazole and nalidixic acid. | 2016 | 27622161 |
| 1146 | 8 | 0.9999 | Molecular detection and prevalence of colistin-resistant Escherichia coli in poultry and humans: a one health perspective. Multidrug-resistant (MDR) bacteria significantly threaten humans and animals worldwide. Colistin is the last resort of antibiotics against gram-negative bacterial infections. Its irrational use in poultry is a major factor in transmitting MDR bacteria to humans. The present study investigated the risk factors, prevalence, and molecular detection of colistin resistance associated with poultry and humans. A total of (n = 140) cloacal swabs from chickens and human stool samples (n = 140) were processed to identify E. coli using conventional methods, followed by genotypic confirmation. Phenotypic and genotypic confirmation of antibiotic resistance genes qnrA, blaTEM, tetA, aadA, and mcr genes was performed on these E. coli isolates. These isolates were confirmed at 69.3% and 62.8% in chickens and humans, respectively. Limited education and poor hygiene significantly increased the infection rate (p = 0.0001). The E. coli isolates from commercial poultry showed 100% resistance to amoxicillin/clavulanic acid, 98.9% to ampicillin, and 93.8% to tetracycline. The E. coli isolates from humans exhibited 90% resistance to ciprofloxacin, 88% to ampicillin, and 85% to ceftriaxone. Among these, MDR E. coli isolates of both commercial poultry and humans, colistin resistance was found in 78.6% and 48.1%, respectively. Genotypic confirmation of mcr genes such as mcr-1 (42%), mcr-2 (19.6%), mcr-3 (15.1%), mcr-4 (7.6%), and mcr-5 (4.5%) in commercial poultry. However, only the mcr-1 (15.6%) gene was found in human isolates. The current study findings highlight the prevalence of mcr genes in E. coli, potentially contributing to broader antibiotic resistance concerns. | 2025 | 40956559 |
| 1163 | 9 | 0.9999 | A Three-Year Look at the Phylogenetic Profile, Antimicrobial Resistance, and Associated Virulence Genes of Uropathogenic Escherichia coli. Uropathogenic Escherichia coli is the most common cause of urinary tract infections, resulting in about 150 million reported annual cases. With multidrug resistance on the rise and the need for global and region surveillance, this investigation looks at the UPEC isolates collected for a 3-year period, with a view of ascertaining their antimicrobial susceptibility patterns and associated virulence determinants. The identification of bacteria isolates, antimicrobial susceptibility, and extended-spectrum beta-lactamases (ESBLs) production was determined with a Vitek 2 Compact Automated System (BioMerieux, Marcy L'Etoile, France). ESBLs were confirmed by the combined disc test (CDT) and basic biochemical test. The isolates were distributed into A (11%), B1 (6%), B2 (62.4%), and D (20.6%). Resistance to the penicillin group was high, between 88% and 100%. Additionally, resistance was high to cephalosporins (100%) in 2017 and 2018. The isolates were all sensitive to tigecycline, while resistance against imipenem and meropenem was low, at 4-12% in 2017 and 2018 and 0% in 2019. The results also showed that ESBL isolates were seen in 2017 and 2018. They were confirmed positive to CTX/CLA (88.5%) and CAZ/CLA (85%). By 2019, the number of resistant isolates reduced, showing only 4% ESBL isolates. Two virulence genes, fimH (46%) and papE/F (15%), were detected among the isolates by PCR. In conclusion, this study found that phylogroups B2 and D carried the most virulence genes as well as MDR and ESBL characteristics, suggesting the UPEC strains to be extraintestinal pathogens responsible for UTIs. | 2022 | 35745485 |
| 1142 | 10 | 0.9999 | Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria. | 2021 | 34888259 |
| 1143 | 11 | 0.9999 | Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. ABSTRACT: The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. | 2020 | 32730609 |
| 2675 | 12 | 0.9999 | Prevalence and Zoonotic Risk of Multidrug-Resistant Escherichia coli in Bovine Subclinical Mastitis Milk: Insights Into the Virulence and Antimicrobial Resistance. The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve E. coli, which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing E. coli (STEC) isolated from SCM milk. SCM-positive bovine milk was subjected to E. coli detection using cultural, biochemical, and molecular methods. Further, we detected STEC virulence genes including stx1, stx2, and eaeA. STEC isolates were tested for ARGs including blaSHV, CITM, tetA, and aac(3)-IV, and underwent antimicrobial susceptibility tests. Moreover, we performed a phylogenetic analysis of the stx1 gene of MDR-STEC. SCM was detected in 47.2% of milk samples of which 50.54% were E. coli positive. About 17.20% of E. coli isolates contained STEC virulence genes, and stx2 was the most prevalent. Moreover, all STEC isolates harbored at least one of the ARGs, while about 43.75% of the isolates carried multiple ARGs. Additionally, all the STEC isolates showed multidrug resistance, and were found to be fully resistant against amoxicillin, followed by ampicillin (87.50%) and gentamycin (75%); and were mostly sensitive to aztreonam (81.25%) and meropenem (68.75%). In phylogeny analysis, the stx1 gene of isolated MDR-STEC showed close relatedness with disease-causing non-O157 and O157 strains of different sources including cattle, humans, and food. | 2025 | 39816483 |
| 2977 | 13 | 0.9999 | Molecular Detection of Antibiotic Resistance Genes in Shiga Toxin-Producing E. coli Isolated from Different Sources. Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen associated with human gastroenteritis outbreaks. Extensive use of antibiotics in agriculture selects resistant bacteria that may enter the food chain and potentially causes foodborne illnesses in humans that are less likely to respond to treatment with conventional antibiotics. Due to the importance of antibiotic resistance, this study aimed to investigate the combination of phenotypic and genotypic antibiotic resistance in STEC isolates belonging to serogroups O26, O45, O103, O104, O111, O121, O145, and O157 using disc diffusion and polymerase chain reaction (PCR), respectively. All strains were phenotypically resistant to at least one antibiotic, with 100% resistance to erythromycin, followed by gentamicin (98%), streptomycin (82%), kanamycin (76%), and ampicillin (72%). The distribution of antibiotic resistance genes (ARGs) in the STEC strains was ampC (47%), aadA1 (70%), ere(A) (88%), bla(SHV) (19%), bla(CMY) (27%), aac(3)-I (90%), and tet(A) (35%), respectively. The results suggest that most of the strains were multidrug-resistant (MDR) and the most often observed resistant pattern was of aadA1, ere(A), and aac(3)-I genes. These findings indicate the significance of monitoring the prevalence of MDR in both animals and humans around the globe. Hence, with a better understanding of antibiotic genotypes and phenotypes among the diverse STEC strains obtained, this study could guide the administration of antimicrobial drugs in STEC infections when necessary. | 2021 | 33804818 |
| 2150 | 14 | 0.9999 | Analysis of drug resistance genes of integrons in clinical isolates of Escherichia coli from elderly bloodstream infections. This experiment was carried out to provide a basis for the treatment of clinical bloodstream infections by analyzing the drug resistance characteristics and integrated gene distribution of Escherichia coli in bloodstream infections in elderly patients. For this aim, E. coli were collected for bacterial identification and drug sensitivity testing from bloodstream infections in elderly patients in the hospital from January 2016 to December 2019. ESBLs positive strains were assayed for genotypes and their integron carriage rates by PCR amplification. The characteristics and differences of various genotype rates were compared and analyzed. Results showed that a total of 230 E. coli strains were isolated. The detection rate of ESBLs-producing bacteria was 37.39 %. ESBLs-producing E. coli showed a high rate of resistance to cefepime, levofloxacin, cotrimoxazole, and ticarcillin/clavulanic acid (>40%). The resistance rate of 230 strains of E. coli to meropenem, minocycline, amikacin, gentamicin and cefoxitin was less than 20%. Among the ESBLs-producing E. coli in bloodstream infections in elderly patients, CTX-M-9 accounted for 27.91%, CTX-M-2 for 17.44%, and SHV for 13.95%. The detection rate of type I integrated genes was 41.30%, and type II and III integrated genes were not detected. ESBLs-producing genotyping-positive bacteria were detected with more than 50% of type I integrated genes. It was concluded that type I integrated genes in ESBLs-producing E. coli isolated from elderly patients carried resistance genes such as CTX-M-9 and CTX-M-2 aggravating multi-drug resistance in bacteria. | 2022 | 36227675 |
| 2674 | 15 | 0.9999 | Phylogeny, virulence factors and antimicrobial susceptibility of Escherichia coli isolated in clinical bovine mastitis. The aim of this study was to identify specific phylogeny groups, virulence genes or antimicrobial resistance traits of Escherichia coli isolated in bovine mastitis associated to clinical signs, persistence of intramammary infection in the quarter and recovery from mastitis. A total of 154 E. coli isolates from bovine clinical mastitis, 144 from the acute stage and 10 from follow-up samples 3 weeks later, originating from 144 cows in 65 dairy herds in Southern Finland were investigated. Phylogeny groups and virulence genes of the isolates were determined using polymerase chain reaction, and antimicrobial susceptibility using the VetMIC™ microdilution method. In ten cows (11.8%), infection persisted, confirmed by re-isolation of the same pulsed-field gel electrophoresis type from the affected quarter at 3 weeks post-treatment. The majority of isolates, 119 (82.6%), belonged to phylogeny group A, which mainly consisted of commensal strains. Altogether 56 isolates (38.9%) had at least one virulence gene detected. Most common virulence genes detected were irp2, iucD, papC iss; genes svg, stx1, stx2, cnf1 and hlyA were not found. Combinations of virulence genes varied greatly. Forty (27.8%) of the 144 E. coli isolates showed resistance to at least one antimicrobial tested. None of the studied phylogeny groups, virulence factors or antimicrobial resistance traits was associated with clinical signs, persistence of intramammary infection or clinical recovery from mastitis. The results support the conclusion that mastitis-causing E. coli bacteria are typical commensals. | 2011 | 20729012 |
| 1147 | 16 | 0.9999 | Detection and Characterisation of Colistin-Resistant Escherichia coli in Broiler Meats. The irrational use of antimicrobials has led to the emergence of resistance, impacting not only pathogenic bacteria but also commensal bacteria. Resistance against colistin, a last-resort antibiotic, mediated by globally disseminated plasmid-borne mobile colistin resistance (mcr) genes, has raised significant global concerns. This cross-sectional study aimed to investigate the antimicrobial resistance patterns of colistin-resistant Escherichia coli (E. coli) and mobilised colistin resistance (mcr 1-5) genes from broiler meat. A total of 570 broiler samples (285 liver and 285 muscle) were collected from 7 supermarkets and 11 live bird markets (LBMs) in Chattogram metropolitan areas of Bangladesh. The isolation and identification of E. coli were carried out using standard bacteriological and molecular techniques. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disc diffusion method, and colistin's minimum inhibitory concentration (MIC) was determined by the broth microdilution (BMD) method. Colistin-resistant isolates were further tested for the presence of mcr (1-5) genes using polymerase chain reaction (PCR). Out of the 570 samples, 311 (54.56%; 95% confidence interval: 50.46-58.60) were positive for E. coli. AST results showed the highest resistance to sulphamethoxazole-trimethoprim (89.39%), while the highest susceptibility was observed for cefalexin (62.70%). A total of 296 isolates (95.18%) were found to be multidrug-resistant (MDR), with the multiple antibiotic resistance (MAR) index ranging from 0.38 to 1. Additionally, 41 isolates (13.18%) exhibited resistance to five antimicrobial classes, with resistance patterns of CIP + SXT + AMP + DO + TE + CT. A total of 233 isolates (74.92%) were resistant to colistin (MIC > 2 mg/L). A strong correlation between colistin resistance and the presence of the mcr-1 gene was observed (r = 1). All phenotypic colistin-resistant E. coli isolates carried the mcr-1 gene, while no isolates were positive for mcr (2-5). The detection of mcr genes in E. coli strains from poultry sources poses a significant risk, as these resistance genes can be transferred to humans through the food chain. The prevalence of multidrug-resistant Escherichia coli and the mcr-1 gene in poultry products in Bangladesh presents a significant public health and food safety concern. | 2024 | 39770738 |
| 2335 | 17 | 0.9999 | Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang. | 2023 | 36977209 |
| 897 | 18 | 0.9999 | Prevalence of class 1 integrons and plasmid-mediated qnr-genes among Enterobacter isolates obtained from hospitalized patients in Ahvaz, Iran. Quinolones are frequently used classes of antimicrobials in hospitals, crucial for the treatment of infections caused by Gram-negative bacteria. The inappropriate use of quinolones and other antimicrobial agents for the treatment of bacterial infections leads to a significant increase of resistant isolates. The acquisition of antimicrobial resistance may be related to achievement of resistance determinant genes mediated by plasmids, transposons and gene cassettes in integrons. The objective of this cross-sectional study, conducted from December 2015 to July 2016 at two teaching hospitals in Ahvaz, southern Iran, was to screen for the presence of class 1 integrons and quinolone resistance genes in clinical isolates of Enterobacter spp. In all, 152 non-duplicated Enterobacter isolates were collected from clinical specimens and identified as Enterobacter spp. using standard microbiological methods. Antimicrobial susceptibility test was determined using the disc diffusion method according to the CLSI recommendation. Determination of class 1 integrons and PMQR genes was assessed by PCR. Analysis of antibiotic susceptibility tests showed that the highest antibiotic resistance was toward ciprofloxacin (55.3%), while the lowest level was observed against meropenem (34.9%). Moreover, 47.4% (72/152) and 29% (44/152) of isolates were positive for class 1 integron and quinolone resistance genes, respectively. The relative frequencies of antibiotic resistance were significantly higher among class 1 integron-positive isolates. In summary, our results highlight the importance of PMQR genes in the emergence of quinolone-resistant Enterobacter isolates. Moreover, it seems that class 1 integrons have a widespread distribution among Enterobacter isolates and have clinical relevance to multiple-drug-resistant isolates. | 2017 | 29286015 |
| 2155 | 19 | 0.9999 | Resistance Profiles and Virulence Factors of Enteric Escherichia coli in Chronic Kidney Disease Patients at Laquintinie Hospital in Douala, Cameroon. Escherichia coli is commonly found in human feces and is the most prevalent resistant microorganism in patients with chronic kidney disease. Several studies demonstrated that virulence factors were a major cause of the emergence of pathogenic strains of E. coli. This study's objective was to determine the antibiotic resistance profile, detect virulence factors, and assess the prevalence of carriage of extended-spectrum beta-lactamase (ESBL) genes in fecal E. coli isolates obtained from chronic kidney disease patients. This research was carried out in Laquintinie Hospital of Douala between January 2022 and December 2023. In total, 458 patients with (n = 197) or without (n = 261) chronic kidney disease and suffering from gastroenteritis constituted the total population. E. coli isolates were obtained by using eosin methylene blue (EMB) agar and identified by the API 20E gallery system. The Kirby-Bauer method was used to determine the isolates' antibiotic resistance profile. The simplex polymerase chain reaction (PCR) served to detect virulence factors and resistance genes. It appeared that all antibiotics tested, except nalidixic acid, presented a significant resistance (p < 0.05) in chronic kidney disease patients contrasted to patients without chronic kidney disease. The antibiotic susceptibility testing revealed a high level of resistance to amoxicillin (94.5%), amoxicillin-clavulanic acid (79.5%), trimethoprim/sulfamethoxazole (69.9%), and ofloxacin (65.8%) in patients with chronic kidney disease. E. coli isolates showed (p < 0.001) a significantly high rate of multidrug resistance phenotype in chronic kidney disease patients (74.0%) as compared to patients without chronic kidney disease (35.7%). According to the virulence genes detected, the most prevalent pathotype of E. coli was the enteropathogenic E. coli (40.8%; n = 40), followed by enterotoxigenic E. coli (29.6%; n = 29) and shiga toxin-producing E. coli (29.6%; n = 29). The screening of resistance genes in pathotypes of E. coli has demonstrated that bla (TEM) (76.5%; n = 75) and bla (CTX-M) (75.5%; n = 74) were the more frequent ESBL resistance genes encountered. This study showed that a high rate of resistance, multidrug resistance, and a high frequency of enteropathogenic E. coli and ESBL resistance genes in E. coli were most often found in chronic kidney disease patients. This high level of enteric multidrug-resistant E. coli in chronic kidney disease patients exposes them to hazardous antibiotic treatment and serious public health issues. | 2025 | 40980185 |