# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2956 | 0 | 1.0000 | Genomic Characterization of Enterococcus hirae From Beef Cattle Feedlots and Associated Environmental Continuum. Enterococci are commensal bacteria of the gastrointestinal tract of humans, animals, and insects. They are also found in soil, water, and plant ecosystems. The presence of enterococci in human, animal, and environmental settings makes these bacteria ideal candidates to study antimicrobial resistance in the One-Health continuum. This study focused on Enterococcus hirae isolates (n = 4,601) predominantly isolated from beef production systems including bovine feces (n = 4,117, 89.5%), catch-basin water (n = 306, 66.5%), stockpiled bovine manure (n = 24, 0.5%), and natural water sources near feedlots (n = 145, 32%), and a few isolates from urban wastewater (n = 9, 0.2%) denoted as human-associated environmental samples. Antimicrobial susceptibility profiling of a subset (n = 1,319) of E. hirae isolates originating from beef production systems (n = 1,308) showed high resistance to tetracycline (65%) and erythromycin (57%) with 50.4% isolates harboring multi-drug resistance, whereas urban wastewater isolates (n = 9) were resistant to nitrofurantoin (44.5%) and tigecycline (44.5%) followed by linezolid (33.3%). Genes for tetracycline (tetL, M, S/M, and O/32/O) and macrolide resistance erm(B) were frequently found in beef production isolates. Antimicrobial resistance profiles of E. hirae isolates recovered from different environmental settings appeared to reflect the kind of antimicrobial usage in beef and human sectors. Comparative genomic analysis of E. hirae isolates showed an open pan-genome that consisted of 1,427 core genes, 358 soft core genes, 1701 shell genes, and 7,969 cloud genes. Across species comparative genomic analysis conducted on E. hirae, Enterococcus faecalis and Enterococcus faecium genomes revealed that E. hirae had unique genes associated with vitamin production, cellulose, and pectin degradation, traits which may support its adaptation to the bovine digestive tract. E. faecium and E. faecalis more frequently harbored virulence genes associated with biofilm formation, iron transport, and cell adhesion, suggesting niche specificity within these species. | 2022 | 35832805 |
| 2399 | 1 | 0.9998 | Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat. Food-borne enterococci could be carriers of antibiotic resistance determinants. The goal of this work was to study the characteristics of Enterococcus spp. in fermented milk products from Poland and their antibiotic resistance gene profiles. A total of 189 strains were isolated from 182 dairy products out of 320 samples tested. The predominant species were Enterococcus faecium (53.4%) and Enterococcus faecalis (34.4%). Isolates were resistant to streptomycin (29.1%), erythromycin (14.3%), tetracycline (11.6%), rifampicin (8.7%), and tigecycline (8.1%). We also detected 2 vancomycin-resistant and 3 linezolid-resistant strains; however, no vanA or vanB genes were identified. A total of 57 high-level aminoglycoside resistance strains (30.2%) were identified, most of which have the ant(6')-Ia gene, followed by the aac(6')-Ie-aph(2″)-Ia and aph(3″)-IIIa genes. Resistance to tetracycline was most often conferred by tetM and tetL genes. Macrolide resistance was most frequently encoded by ermB and ermA genes. Conjugative mobile genetic element (transposon Tn916-Tn1545) was identified in 15.3% of the strains, including 96.3% of strains harboring the tetM gene. This study found that enterococci are widely present in retail ready-to-eat dairy products in Poland. Many isolated strains are antibiotic resistant and carry transferable resistance genes, which represent a potential source of transmission of multidrug-resistant bacteria to humans. | 2020 | 32197843 |
| 2957 | 2 | 0.9998 | Characteristics of High-Level Aminoglycoside-Resistant Enterococcus faecalis Isolated from Bulk Tank Milk in Korea. Enterococci, which are considered environmental mastitis-causing pathogens, have easily acquired aminoglycoside-resistant genes that encode various aminoglycoside-modifying enzymes (AME). Therefore, this study was conducted to compare the distribution of high-level aminoglycoside-resistant (HLAR) and multidrug-resistant (MDR) Enterococcus faecalis (E. faecalis) bacteria isolated from bulk tank milk in four dairy companies in Korea. Moreover, it analyzed the characteristics of their antimicrobial resistance genes and virulence factors. Among the 301 E. faecalis bacteria studied, 185 (61.5%) showed HLAR with no significant differences among the dairy companies. Furthermore, 129 (69.7%) of the 185 HLAR E. faecalis showed MDR without significant differences among companies. In contrast, HLAR E. faecalis from companies A, B, and C were significantly higher in resistance to the four classes than those in company D, which had the highest MDR ability against the three antimicrobial classes (p < 0.05). In addition, in the distribution of AME genes, 72 (38.9%) and 36 (19.5%) of the isolates carried both aac(6')Ie-aph(2″)-la and ant(6)-Ia genes, and the ant (6)-Ia gene alone, respectively, with significant differences among the companies (p < 0.05). In the distribution of virulence genes, the ace (99.5%), efa A (98.9%), and cad 1 (98.4%) genes were significantly prevalent (p < 0.05). Thus, our results support that an advanced management program by companies is required to minimize the dissemination of antimicrobial resistance and virulence factors. | 2021 | 34207875 |
| 2400 | 3 | 0.9998 | Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements. | 2007 | 18251398 |
| 2398 | 4 | 0.9998 | Antimicrobial-Resistant Enterococcus spp. in Wild Avifauna from Central Italy. Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial-resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high-level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug-resistant, with 19.41% extensively drug-resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)-Ia and aac(6')-Ie-aph(2″)-Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial-resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, too. | 2022 | 35884106 |
| 2817 | 5 | 0.9997 | Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed. | 2011 | 21145609 |
| 2895 | 6 | 0.9997 | Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates. | 2012 | 22854332 |
| 2931 | 7 | 0.9997 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 2038 | 8 | 0.9997 | Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. BACKGROUND: Salmonella 4,[5],12:i:-, a worldwide emerging pathogen that causes many food-borne outbreaks mostly attributed to pig and pig products, is expanding in the United States. METHODS: Whole-genome sequencing was applied to conduct multiple comparisons of 659 S. 4,[5],12:i:- and 325 Salmonella Typhimurium from different sources and locations (ie, the United States and Europe) to assess their genetic heterogeneity, with a focus on strains recovered from swine in the US Midwest. In addition, the presence of resistance genes and other virulence factors was detected and the antimicrobial resistance phenotypes of 50 and 22 isolates of livestock and human origin, respectively, was determined. RESULTS: The S. 4,5,12:i:- strains formed two main clades regardless of their source and geographic origin. Most (84%) of the US isolates recovered in 2014-2016, including those (48 of 51) recovered from swine in the US Midwest, were part of an emerging clade. In this clade, multiple genotypic resistance determinants were predominant, including resistance against ampicillin, streptomycin, sulfonamides, and tetracyclines. Phenotypic resistance to enrofloxacin (11 of 50) and ceftiofur (9 of 50) was found in conjunction with the presence of plasmid-mediated resistance genes (qnrB19/qnrB2/qnrS1 and blaCMY-2/blaSHV-12, respectively). Higher similarity was also found between S. 4,[5],12:i:- from the emerging clade and S. Typhimurium from Europe than with S. Typhimurium from the United States. CONCLUSIONS: Salmonella 4,[5],12:i:- currently circulating in swine in the US Midwest are likely to be part of an emerging multidrug-resistant clade first reported in Europe, and can carry plasmid-mediated resistance genes that may be transmitted horizontally to other bacteria, and thus may represent a public health concern. | 2018 | 29069323 |
| 2967 | 9 | 0.9997 | Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. INTRODUCTION: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. METHODOLOGY: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. RESULTS: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. CONCLUSIONS: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat. | 2015 | 25596569 |
| 2961 | 10 | 0.9997 | Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance. | 2020 | 32326051 |
| 2671 | 11 | 0.9997 | Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread. | 2021 | 33220406 |
| 2955 | 12 | 0.9997 | Mapping the widespread distribution and transmission dynamics of linezolid resistance in humans, animals, and the environment. BACKGROUND: The rise of linezolid resistance has been widely observed both in clinical and non-clinical settings. However, there were still data gaps regarding the comprehensive prevalence and interconnections of linezolid resistance genes across various niches. RESULTS: We screened for potential linezolid resistance gene reservoirs in the intestines of both humans and animals, in meat samples, as well as in water sources. A total of 796 bacteria strains out of 1538 non-duplicated samples were identified to be positive for at least one linezolid resistance gene, optrA, poxtA, cfr, and cfr(D). The prevalence of optrA reached 100% (95% CI 96.3-100%) in the intestines of pigs, followed by fish, ducks, and chicken at 77.5% (95% CI 67.2-85.3%), 62.0% (95% CI 52.2-70.9%), and 61.0% (95% CI 51.2-70.0%), respectively. The meat and water samples presented prevalences of 80.0% (95% CI 70.6-87.0%) and 38.0% (95% CI 25.9-51.9%), respectively. The unreported prevalence of the cfr(D) gene was also relatively higher at 13.0% (95% CI 7.8-21.0%) and 19.0% (95% CI 10.9-25.6%) for the feces samples of ducks and pigs, respectively. Enterococci were the predominant hosts for all genes, while several non-enterococcal species were also identified. Phylogenetic analysis revealed a significant genetic distance among linezolid resistance gene reservoirs, with polyclonal structures observed in strains within the same niche. Similar genetic arrays harboring assorted insertion sequences or transposons were shared by reservoirs displaying heterogeneous backgrounds, though large diversity in the genetic environment of linezolid resistance genes was also observed. CONCLUSIONS: The linezolid resistance genes were widespread among various niches. The horizontal transfer played a crucial role in driving the circulation of linezolid resistance reservoirs at the human-animal-environment interfaces. Video Abstract. | 2024 | 38481333 |
| 2693 | 13 | 0.9997 | Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Clostridioides difficile (C. difficile) is the most common pathogen causing antibiotic-associated intestinal diseases in humans and some animal species, but it can also be present in various environments outside hospitals. Thus, the objective of this study was to investigate the presence and the characteristics of toxin-encoding genes and antimicrobial resistance of C. difficile isolates from different environmental sources. C. difficile was found in 32 out of 81 samples (39.50%) after selective enrichment of spore-forming bacteria and in 45 samples (55.56%) using a TaqMan-based qPCR assay. A total of 169 C. difficile isolates were recovered from those 32 C. difficile-positive environmental samples. The majority of environmental C. difficile isolates were toxigenic, with many (88.75%) positive for tcdA and tcdB. Seventy-four isolates (43.78%) were positive for binary toxins, cdtA and cdtB, and 19 isolates were non-toxigenic. All the environmental C. difficile isolates were susceptible to vancomycin and metronidazole, and most isolates were resistant to ciprofloxacin (66.86%) and clindamycin (46.15%), followed by moxifloxacin (13.02%) and tetracycline (4.73%). Seventy-five isolates (44.38%) showed resistance to at least two of the tested antimicrobials. C. difficile strains are commonly present in various environmental sources contaminated by feces and could be a potential source of community-associated C. difficile infections. | 2023 | 36671363 |
| 2968 | 14 | 0.9997 | The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes. | 2013 | 24053020 |
| 2849 | 15 | 0.9997 | Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation. | 2021 | 33558614 |
| 2918 | 16 | 0.9997 | Antibiotic resistance genes in multidrug-resistant Enterococcus spp. and Streptococcus spp. recovered from the indoor air of a large-scale swine-feeding operation. AIMS: In this study, multidrug-resistant bacteria previously recovered from the indoor air of a large-scale swine-feeding operation were tested for the presence of five macrolide, lincosamide and streptogramin (MLS) resistance genes and five tetracycline (tet) resistance genes. METHODS AND RESULTS: Enterococcus spp. (n = 16) and Streptococcus spp. (n =16) were analysed using DNA-DNA hybridization, polymerase chain reaction (PCR) and oligoprobing of PCR products. All isolates carried multiple MLS resistance genes, while 50% of the Enterococcus spp. and 44% of the Streptococcus spp. also carried multiple tet resistance genes. All Enterococcus spp. carried erm(A) and erm(B), 69% carried erm(F), 44% carried mef(A), 75% carried tet(M), 69% carried tet(L) and 19% carried tet(K). All Streptococcus spp. carried erm(B), 94% carried erm(F), 75% carried erm(A), 38% carried mef(A), 50% carried tet(M), 81% carried tet(L) and 13% carried tet(K). CONCLUSIONS: Multidrug resistance among airborne bacteria recovered from a swine operation is encoded by multiple MLS and tet resistance genes. These are the first data regarding resistance gene carriage among airborne bacteria from swine-feeding operations. SIGNIFICANCE AND IMPACT OF THE STUDY: The high prevalence of multiple resistance genes reported here suggests that airborne Gram-positive bacteria from swine operations may be important contributors to environmental reservoirs of resistance genes. | 2006 | 17032228 |
| 2715 | 17 | 0.9997 | From the Farms to the Dining Table: The Distribution and Molecular Characteristics of Antibiotic-Resistant Enterococcus spp. in Intensive Pig Farming in South Africa. Foodborne pathogens, including antibiotic-resistant species, constitute a severe menace to food safety globally, especially food animals. Identifying points of concern that need immediate mitigation measures to prevent these bacteria from reaching households requires a broad understanding of these pathogens' spread along the food production chain. We investigated the distribution, antibiotic susceptibility, molecular characterization and clonality of Enterococcus spp. in an intensive pig production continuum in South Africa, using the farm-to-fork approach. Enterococcus spp. were isolated from 452 samples obtained along the pig farm-to-fork continuum (farm, transport, abattoir, and retail meat) using the IDEXX Enterolert(®)/Quanti-Tray(®) 2000 system. Pure colonies were obtained on selective media and confirmed by real-time PCR, targeting genus- and species-specific genes. The susceptibility to antibiotics was determined by the Kirby-Bauer disk diffusion method against 16 antibiotics recommended by the WHO-AGISAR using EUCAST guidelines. Selected antibiotic resistance and virulence genes were detected by real-time PCR. Clonal relatedness between isolates across the continuum was evaluated by REP-PCR. A total of 284 isolates, consisting of 79.2% E. faecalis, 6.7% E. faecium, 2.5% E. casseliflavus, 0.4% E. gallinarum, and 11.2% other Enterococcus spp., were collected along the farm-to-fork continuum. The isolates were most resistant to sulfamethoxazole-trimethoprim (78.8%) and least resistant to levofloxacin (5.6%). No resistance was observed to vancomycin, teicoplanin, tigecycline and linezolid. E. faecium displayed 44.4% resistance to quinupristin-dalfopristin. Also, 78% of the isolates were multidrug-resistant. Phenotypic resistance to tetracycline, aminoglycosides, and macrolides was corroborated by the presence of the tetM, aph(3')-IIIa, and ermB genes in 99.1%, 96.1%, and 88.3% of the isolates, respectively. The most detected virulence gene was gelE. Clonality revealed that E. faecalis isolates belonged to diverse clones along the continuum with major REP-types, mainly isolates from the same sampling source but different sampling rounds (on the farm). E. faecium isolates revealed a less diverse profile. The results suggest that intensive pig farming could serve as a reservoir of antibiotic-resistant bacteria that could be transmitted to occupationally exposed workers via direct contact with animals or consumers through animal products/food. This highlights the need for more robust guidelines for antibiotic use in intensive farming practices and the necessity of including Enterococcus spp. as an indicator in antibiotic resistance surveillance systems in food animals. | 2021 | 33918989 |
| 2036 | 18 | 0.9997 | Genotypic and Phenotypic Characterization of Antimicrobial and Heavy Metal Tolerance in Salmonella enterica and Escherichia coli Isolates from Swine Feed Mills. Antimicrobials and heavy metals are commonly used in the animal feed industry. The role of in-feed antimicrobials on the evolution and persistence of resistance in enteric bacteria is not well described. Whole-Genome Sequencing (WGS) is widely used for genetic characterizations of bacterial isolates, including antimicrobial resistance, heavy metal tolerance, virulence factors, and relatedness to other sequenced isolates. The goals of this study were to i) use WGS to characterize Salmonella enterica (n = 33) and Escherichia coli (n = 30) isolated from swine feed and feed mill environments; and ii) investigate their genotypic and phenotypic antimicrobial and heavy metal tolerance. Salmonella isolates belonged to 10 serovars, the most common being Cubana, Senftenberg, and Tennessee. E. coli isolates were grouped into 22 O groups. Phenotypic resistance to at least one antimicrobial was observed in 19 Salmonella (57.6%) and 17 E. coli (56.7%) isolates, whereas multidrug resistance (resistant to ≥3 antimicrobial classes) was observed in four Salmonella (12%) and two E. coli (7%) isolates. Antimicrobial resistance genes were identified in 17 Salmonella (51%) and 29 E. coli (97%), with 11 and 29 isolates possessing genes conferring resistance to multiple antimicrobial classes. Phenotypically, 53% Salmonella and 58% E. coli presented resistance to copper and arsenic. All isolates that possessed the copper resistance operon were resistant to the highest concentration tested (40 mM). Heavy metal tolerance genes to copper and silver were present in 26 Salmonella isolates. Our study showed a strong agreement between predicted and measured resistances when comparing genotypic and phenotypic data for antimicrobial resistance, with an overall concordance of 99% and 98.3% for Salmonella and E. coli, respectively. | 2023 | 37290750 |
| 2896 | 19 | 0.9997 | Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Resistance transfer from animals to humans (and vice versa) is a frequently discussed topic in human and veterinary medicine, albeit relevant studies focus mainly on phenotypic antibiotic resistance. In order to get a comparative insight regarding the distribution of selected resistance genes [tet(A/B/C/D/M/K/L/O/S/W/Z), sulI, II, III, str(A/B), aad(A)] in Escherichia coli of different origins, phenotypically tetracycline resistant isolates of porcine and human origin (n=137 and 152) were investigated using PCR. The most common gene was tet(A) in porcine, but tet(B) in human isolates (>55%). Tet(C/M/D) were rare (1-7%); tet(K/L/O/S/W/Z) were not detected. Co-occurrence of tet(A) and tet(B) was more frequent in human strains (11% vs. 2%). 88% of the porcine isolates had one, and 9% had two tet-genes. By contrast, only 69% of the human strains had one tet-gene, whereas 17% were carriers of two tet-determinants. The most common sulfonamide resistance gene was represented by sulII (40% in porcine, 62% in human isolates), followed by sulI. SulIII was present in eight isolates. Streptomycin resistance was mostly mediated by str(A)/str(B) in porcine, and by str(A)/str(B)/aad(A) in human strains (35% each). In one E. coli of human origin, 7 resistance genes were simultaneously detected. Co-occurrence of 5 or 6 resistance genes was more present in human strains, whereas porcine isolates carried more often only 1-4 genes. The huge diversities between gene patterns of bacteria of human and porcine origin indicate that genetic transfers between microorganisms from different sources are less frequent than transfers within populations of the same source. | 2010 | 19939589 |