# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2947 | 0 | 1.0000 | Large-Scale Studies on Antimicrobial Resistance and Molecular Characterization of Escherichia coli from Food Animals in Developed Areas of Eastern China. Widely distributed multidrug-resistant (MDR) bacteria threaten animals and human health. Nevertheless, few antimicrobial resistance (AMR) surveys of large-scale animal-derived bacteria have been explored. Here, 1,468 (97.54%) Escherichia coli strains were isolated from 1,505 pig (1,060) and chicken (445) anal swab samples from 11 cities in Zhejiang Province, China, in 2020. These isolates had a high resistance to tetracycline (92.92%), sulfisoxazole (93.05%), florfenicol (83.11%), and ampicillin (78.27%). More than 88.68% of the strains were MDR bacteria. A low AMR ratio to the "last-resort" antimicrobials tigecycline (0.75%), colistin (1.36%), and meropenem (0.75%) were found. The AMR of E. coli from pigs was higher than that of chickens. Eighteen strains among 31 MDR strains that were resistant to "last-resort" antimicrobials could transfer the AMR genes (mcr-1, tet(X), and bla(NDM)) to the recipient strain J53, which confer colistin, tigecycline, and carbapenem resistance, respectively. The homology among mcr-1-carrying isolates was relatively high, and the sequence types were mainly ST5529, ST101, and ST354, while the homology of isolates harboring tet(X4) and bla(NDM-5) genes were different. The mcr-1, bla(NDM-5), and tet(X4) genes in strains LS45, JH51, and TZ118 were identified on the Incl2, IncHI2, and IncX1 plasmids, respectively. Moreover, tet(A), sul2, floR, and bla(TEM-1B) were the most common ARGs in 31 strains. Additionally, the heavy metals copper and zinc had a significant correlation with amoxicillin/clavulanate and tetracycline resistance. Controlling the movement of animals between cities and reducing the use of antimicrobials are effective methods to reduce the threat of AMR bacteria. IMPORTANCE Pigs and chickens are the most common food animals that are the important vectors for spreading antimicrobial-resistant pathogens among animals and humans. Limited systematic AMR monitoring of these food animal origin bacteria had been reported, especially in developed areas of China. Our study provides a comprehensive and systematic study of AMR in Escherichia coli from eastern China. The AMR of E. coli strains among the animals or cities has statistically significant differences. Moreover, the mcr-1, tet(X4), and bla(NDM-5) genes, considered resistant to the last line of AMR, were identified in part of farms. The transferability and the prevalence of these AMR strains were intensively studied. Our monitoring is comparable to human clinical research and has an essential reference for public health safety. These findings will provide early warning for AMR strains and guide the clinical use of antibiotics to control the spread of antibiotic resistance. | 2022 | 35950758 |
| 2949 | 1 | 0.9999 | Genomic analysis of multidrug-resistant Escherichia coli strains carrying the mcr-1 gene recovered from pigs in Lima-Peru. Antibiotic resistance is a current problem that significantly impacts overall health. The dissemination of antibiotic resistance genes (ARGs) to urban areas primarily occurs through ARG-carrying bacteria present in the gut microbiota of animals raised in intensive farming settings, such as pig production. Hence, this study aimed to isolate and analyzed 87 Escherichia coli strains from pig fecal samples obtained from intensive farms in Lima Department. The isolates were subjected to Kirby-Bauer-Disk Diffusion Test and PCR for mcr-1 gene identification. Disk-diffusion assay revealed a high level of resistance among these isolates to oxytetracycline, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, and doxycycline. PCR analysis identified the mcr-1 gene in 8% (7/87) E. coli isolates. Further, whole genome sequencing was conducted on 17 isolates, including multidrug resistance (MDR) E. coli and/or mcr-1 gene carriers. This analysis unveiled a diverse array of ARGs. Alongside the mcr-1 gene, the bla(CTX-M55) gene was particularly noteworthy as it confers resistance to third generation cephalosporins, including ceftriaxone. MDR E. coli genomes exhibited other ARGs encoding resistance to fosfomycin (fosA3), quinolones (qnrB19, qnrS1, qnrE1), tetracyclines (tetA, tetB, tetD, tetM), sulfonamides (sul1, sul2, sul3), amphenicols (cmlA1, floR), lincosamides (inuE), as well as various aminoglycoside resistance genes. Additionally, Multi Locus Sequence Typing (MLST) revealed a high diversity of E. coli strains, including ST10, a pandemic clone. This information provides evidence of the dissemination of highly significant ARGs in public health. Therefore, it is imperative to implement measures aimed at mitigating and preventing the transmission of MDR bacteria carrying ARGs to urban environments. | 2023 | 37473695 |
| 1613 | 2 | 0.9999 | Research note: Occurrence of mcr-encoded colistin resistance in Escherichia coli from pigs and pig farm workers in Vietnam. WHO considers colistin as a highest priority critically important drug for human health, and occurrence of colistin-resistant bacteria in livestock is of health concern. The current study determined occurrence of colistin-resistant Escherichia coli in pigs and workers at pig farms in Vietnam, and investigated the genetic background for resistance. Colistin-resistant E. coli were detected from pigs in 53/116 (45.7%) farms, and from workers taking care of the pigs in 21/94 (22.3%) farms. Colistin-resistant isolates showed MIC to colistin between 4-16 mg/L, they were multidrug resistant (99%) and resistance was caused by the presence of mcr-1 genes in 97/102 (95.1%) E. coli from pigs and in 31/34 (91.1%) isolates from humans. mcr-1 is considered a plasmid-encoded gene, but this was not confirmed in the current investigation. In total, one pig isolate carried both mcr-1 and mcr-3 genes, whereas mcr-2, mcr-4 and mcr-5 genes were not detected. Shared resistance profiles between pig and human isolates on the same farm was only observed in four farms. The study showed that commensal E. coli from pigs in Vietnam constitute a reservoir for colistin-resitant E. coli, however, further studies are needed to confirm that mcr genes are associated with plasmids and their importance for human health. | 2020 | 37333956 |
| 2976 | 3 | 0.9998 | Phenotypic and Genotypic Antimicrobial Resistance in Non-O157 Shiga Toxin-Producing Escherichia coli Isolated From Cattle and Swine in Chile. Non-O157 Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes bloody diarrhea and hemolytic-uremic syndrome in humans, and a major cause of foodborne disease. Despite antibiotic treatment of STEC infections in humans is not recommended, the presence of antimicrobial-resistant bacteria in animals and food constitutes a risk to public health, as the pool of genes from which pathogenic bacteria can acquire antibiotic resistance has increased. Additionally, in Chile there is no information on the antimicrobial resistance of this pathogen in livestock. Thus, the aim of this study was to characterize the phenotypic and genotypic antimicrobial resistance of STEC strains isolated from cattle and swine in the Metropolitan region, Chile, to contribute relevant data to antimicrobial resistance surveillance programs at national and international level. We assessed the minimal inhibitory concentration of 18 antimicrobials, and the distribution of 12 antimicrobial resistance genes and class 1 and 2 integrons in 54 STEC strains. All strains were phenotypically resistant to at least one antimicrobial drug, with a 100% of resistance to cefalexin, followed by colistin (81.5%), chloramphenicol (14.8%), ampicillin and enrofloxacin (5.6% each), doxycycline (3.7%), and cefovecin (1.9%). Most detected antibiotic resistance genes were dfrA1 and tetA (100%), followed by tetB (94.4%), bla (TEM-1) (90.7%), aac(6)-Ib (88.9%), bla (AmpC) (81.5%), cat1 (61.1%), and aac(3)-IIa (11.1%). Integrons were detected only in strains of swine origin. Therefore, this study provides further evidence that non-O157 STEC strains present in livestock in the Metropolitan region of Chile exhibit phenotypic and genotypic resistance against antimicrobials that are critical for human and veterinary medicine, representing a major threat for public health. Additionally, these strains could have a competitive advantage in the presence of antimicrobial selective pressure, leading to an increase in food contamination. This study highlights the need for coordinated local and global actions regarding the use of antimicrobials in animal food production. | 2020 | 32754621 |
| 877 | 4 | 0.9998 | Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Animal-derived Enterobacteriaceae bacteria such as Escherichia coli (E. coli), Proteus mirabilis (P. mirabilis), and Klebsiella pneumoniae (K. pneumoniae) are important food-borne zoonotic bacilli that exist widely in the broiler-breeding industry. Although carbapenem antibiotics are considered to be the last line of defense against multidrug-resistant bacteria, carbapenem-resistant Enterobacteriaceae (CRE) break through them. In our study, we therefore, examined the prevalence of CRE and characteristics of antimicrobial resistance in 6 conventional broiler-fattening farms in Shandong Province, China. Our study revealed isolation rates of 3.57% (6/168) for carbapenem-resistant E. coli, 10% (5/50) for carbapenem-resistant P. mirabilis, and 3.03% (1/33) for carbapenem-resistant K. pneumoniae. All 12 CRE bacterial strains showed varying degrees of resistance to 27 antibiotics in 8 classes and were multidrug-resistant. The rate of the strains containing bla(NDM) genes, at 91.67% (11/12), was especially high. Among other results, the carrying rate of integrons in CRE bacteria was 91.67% (11/12), and 2 strains carried both class I and class II integrons, which accelerated the lateral transmission of resistant bacteria. Our first-ever finding of the 3 CRE bacteria E. coli, P. mirabilis, and K. pneumoniae on the same broiler farm suggests that poultry-derived CRE strains may pose a risk to humans. Moreover, our findings from surveillance can inform current understandings of the prevalence and characteristics of multidrug-resistant CRE in Shandong Province and, in turn, help to curb threats to food safety and public health and better prevent and control infectious zoonotic diseases. | 2023 | 36682131 |
| 1653 | 5 | 0.9998 | Resistance Genes, Plasmids, Multilocus Sequence Typing (MLST), and Phenotypic Resistance of Non-Typhoidal Salmonella (NTS) Isolated from Slaughtered Chickens in Burkina Faso. The emergence of antimicrobial-resistant bacteria in developing countries increases risks to the health of both such countries' residents and the global community due to international travel. It is consequently necessary to investigate antimicrobial-resistant pathogens in countries such as Burkina Faso, where surveillance data are not available. To study the epidemiology of antibiotic resistance in Salmonella, 102 Salmonella strains isolated from slaughtered chickens were subjected to whole-genome sequencing (WGS) to obtain information on antimicrobial resistance (AMR) genes and other genetic factors. Twenty-two different serotypes were identified using WGS, the most prevalent of which were Hato (28/102, 27.5%) and Derby (23/102, 22.5%). All strains analyzed possessed at least one and up to nine AMR genes, with the most prevalent being the non-functional aac(6')-Iaa gene, followed by aph(6)-Id. Multi-drug resistance was found genotypically in 36.2% of the isolates for different classes of antibiotics, such as fosfomycin and β-lactams, among others. Plasmids were identified in 43.1% of isolates (44/102), and 25 plasmids were confirmed to carry AMR genes. The results show that chicken can be considered as a reservoir of antibiotic-resistant Salmonella strains. Due to the prevalence of these drug-resistant pathogens and the potential for foodborne illnesses, poultry processing and cooking should be performed with attention to prescribed safe handling methods to avoid cross-contamination with chicken products. | 2022 | 35740187 |
| 1964 | 6 | 0.9998 | Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin. | 2025 | 40135877 |
| 1619 | 7 | 0.9998 | Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt. BACKGROUND: Antimicrobial resistance has become one of the most severe global threats to human and veterinary Medicine. colistin is an effective therapeutic agent against multi-drug-resistant pathogens. However, the discovery of transferable plasmids that confer resistance to colistin (mcr-1) has led to challenges in medical science. This study describes the role of wild birds in the harbouring and environmental spread of colistin-resistant bacteria, which could pose a potential hazard to human and animal health. METHODS: In total, 140 faecal samples from wild birds (migratory and resident birds) were tested. Twenty surface water samples were collected from the area in which wild bird trapping was conducted, and 50 human stool samples were collected from individuals residing near the surface water sources and farm buildings. Isolation and identification of Enterobacteriaceae and Pseudomonas aeruginosa from the different samples were performed using conventional culture techniques and biochemical identification. PCR amplification of the mcr genes was performed in all positive isolates. Sequencing of mcr-1 genes from three randomly selected E. coli carrying mcr-1 isolates; wild birds, water and humans was performed. RESULT: The bacteriological examination of the samples showing isolates of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca and P. aeruginosa. The results of multiplex PCR of the mcr genes revealed that E. coli was the most prevalent gram-negative bacterium harbouring the mcr genes, whereas a low prevalence was observed for K. pneumoniae. The prevalence of mcr-1 in resident birds, migratory birds, water sources and humans were 10.4, 20,16.6 and 9.6% while the prevalence of mcr-2 were 1.4, 3.6, 11.1 and 9.6%, respectively. Sequencing of the mcr-1 gene from the three E. coli carrying mcr-1 isolates indicated a possible correlation between the wild bird and surface water isolates. CONCLUSION: The detection of mcr-1-positive bacteria in wild birds in Egypt indicates the possible environmental dissemination of this gene through bird activity. The impact of the interaction between domestic and wild animals on public health cannot be overlooked. | 2019 | 31827778 |
| 2761 | 8 | 0.9998 | First reported detection of the mobile colistin resistance genes, mcr-8 and mcr-9, in the Irish environment. The emergence and dissemination of mobile colistin resistance (mcr) genes across the globe poses a significant threat to public health, as colistin remains one of the last line treatment options for multi-drug resistant infections. Environmental samples (157 water and 157 wastewater) were collected in Ireland between 2018 and 2020. Samples collected were assessed for the presence of antimicrobial resistant bacteria using Brilliance ESBL, Brilliance CRE, mSuperCARBA and McConkey agar containing a ciprofloxacin disc. All water and integrated constructed wetland influent and effluent samples were filtered and enriched in buffered peptone water prior to culture, while wastewater samples were cultured directly. Isolates collected were identified via MALDI-TOF, were tested for susceptibility to 16 antimicrobials, including colistin, and subsequently underwent whole genome sequencing. Overall, eight mcr positive Enterobacterales (one mcr-8 and seven mcr-9) were recovered from six samples (freshwater (n = 2), healthcare facility wastewater (n = 2), wastewater treatment plant influent (n = 1) and integrated constructed wetland influent (piggery farm waste) (n = 1)). While the mcr-8 positive K. pneumoniae displayed resistance to colistin, all seven mcr-9 harbouring Enterobacterales remained susceptible. All isolates demonstrated multi-drug resistance and through whole genome sequencing analysis, were found to harbour a wide variety of antimicrobial resistance genes i.e., 30 ± 4.1 (10-61), including the carbapenemases, bla(OXA-48) (n = 2) and bla(NDM-1) (n = 1), which were harboured by three of the isolates. The mcr genes were located on IncHI2, IncFIIK and IncI1-like plasmids. The findings of this study highlight potential sources and reservoirs of mcr genes in the environment and illustrate the need for further research to gain a better understanding of the role the environment plays in the persistence and dissemination of antimicrobial resistance. | 2023 | 36906027 |
| 1652 | 9 | 0.9998 | Diversity of antimicrobial-resistant bacteria isolated from Australian chicken and pork meat. Antimicrobial-resistant bacteria are frequently isolated from retail meat and may infect humans. To determine the diversity of antimicrobial-resistant bacteria in Australian retail meat, bacteria were cultured on selective media from raw chicken (n = 244) and pork (n = 160) meat samples obtained from all four major supermarket chains in the ACT/NSW, Australia, between March and June 2021. Antimicrobial susceptibility testing (AST) was performed for 13 critically and 4 highly important antibiotics as categorised by the World Health Organization (WHO) for a wide range of species detected in the meat samples. A total of 288 isolates underwent whole-genome sequencing (WGS) to identify the presence of antimicrobial resistance (AMR) genes, virulence genes, and plasmids. AST testing revealed that 35/288 (12%) of the isolates were found to be multidrug-resistant (MDR). Using WGS data, 232/288 (81%) of the isolates were found to harbour resistance genes for critically or highly important antibiotics. This study reveals a greater diversity of AMR genes in bacteria isolated from retail meat in Australia than previous studies have shown, emphasising the importance of monitoring AMR in not only foodborne pathogenic bacteria, but other species that are capable of transferring AMR genes to pathogenic bacteria. | 2024 | 38440146 |
| 1889 | 10 | 0.9998 | Widespread Dissemination of Plasmid-Mediated Tigecycline Resistance Gene tet(X4) in Enterobacterales of Porcine Origin. The emergence of the plasmid-mediated high levels of the tigecycline resistance gene has drawn worldwide attention and has posed a major threat to public health. In this study, we investigated the prevalence of the tet(X4)-positive Enterobacterales isolates collected from a pig slaughterhouse and farms. A total of 101 tigecycline resistance strains were isolated from 353 samples via a medium with tigecycline, of which 33 carried tet(X4) (9.35%, 33/353) and 2 carried tet(X6) (0.57%, 2/353). These strains belong to seven different species, with Escherichia coli being the main host bacteria. Importantly, this report is the first one to demonstrate that tet(X4) was observed in Morganella morganii. Whole-genome sequencing results revealed that tet(X4)-positive bacteria can coexist with other resistance genes, such as bla(NDM-1) and cfr. Additionally, we were the first to report that tet(X4) and bla(NDM-1) coexist in a Klebsiella quasipneumoniae strain. The phylogenetic tree of 533 tet(X4)-positive E. coli strains was constructed using 509 strains from the NCBI genome assembly database and 24 strains from this study, which arose from 8 sources and belonged to 135 sequence types (STs) worldwide. We used Nanopore sequencing to interpret the selected 21 nonclonal and representative strains and observed that 19 tet(X4)-harboring plasmids were classified into 8 replicon types, and 2 tet(X6) genes were located on integrating conjugative elements. A total of 68.42% of plasmids carrying tet(X4) were transferred successfully with a conjugation frequency of 10(-2) to 10(-7). These findings highlight that diverse plasmids drive the widespread dissemination of the tigecycline resistance gene tet(X4) in Enterobacterales of porcine origin. IMPORTANCE Tigecycline is considered to be the last resort of defense against diseases caused by broad-spectrum resistant Gram-negative bacteria. In this study, we systematically analyzed the prevalence and genetic environments of the resistance gene tet(X4) in a pig slaughterhouse and farms and the evolutionary relationship of 533 tet(X4)-positive Escherichia coli strains, including 509 tet(X4)-positive E. coli strains selected from the 27,802 assembled genomes of E. coli from the NCBI between 2002 and 2022. The drug resistance of tigecycline is widely prevalent in pig farms where tetracycline is used as a veterinary drug. This prevalence suggests that pigs are a large reservoir of tet(X4) and that tet(X4) can spread horizontally through the food chain via mobile genetic elements. Furthermore, tetracycline resistance may drive tigecycline resistance through some mechanisms. Therefore, it is important to monitor tigecycline resistance, develop effective control measures, and focus on tetracycline use in the pig farms. | 2022 | 36125305 |
| 1618 | 11 | 0.9998 | Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Antimicrobial resistance (AMR) surveillance in fecal Escherichia coli isolates from wildlife is crucial for monitoring the spread of this microorganism in the environment and for developing effective AMR control strategies. Wildlife can act as carriers of AMR bacteria and spread them to other wildlife, domestic animals, and humans; thus, they have public health implications. A total of 128 Escherichia coli isolates were obtained from 66 of 217 fecal samples obtained from different wild animals using media without antibiotic supplementation. Antibiograms were performed for 17 antibiotics to determine the phenotypic resistance profile in these isolates. Extended-spectrum β-lactamase (ESBL) production was tested using the double-disc synergy test, and 29 E. coli strains were selected for whole genome sequencing. In total, 22.1% of the wild animals tested carried multidrug-resistant E. coli isolates, and 0.93% (2/217) of these wild animals carried E. coli isolates with ESBL-encoding genes (bla(CTX-M-65), bla(CTX-M-55), and bla(EC-1982)). The E. coli isolates showed the highest resistance rates to ampicillin and were fully susceptible to amikacin, meropenem, ertapenem, and imipenem. Multiple resistance and virulence genes were detected, as well as different plasmids. The relatively high frequency of multidrug-resistant E. coli isolates in wildlife, with some of them being ESBL producers, raises some concern regarding the potential transmission of antibiotic-resistant bacteria among these animals. Gaining insights into antibiotic resistance patterns in wildlife can be vital in shaping conservation initiatives and developing effective strategies for responsible antibiotic use. | 2024 | 39453061 |
| 1603 | 12 | 0.9998 | Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California. The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even more worrisome, urging us to investigate the prevalence of mcr genes among STEC isolates. A total of 1000 STEC isolates, recovered from livestock, wildlife, produce and other environmental sources in a major production region for leafy vegetables in California during 2006-2014, were screened by PCR for the presence of plasmid-borne mcr-1 and mcr-2. All isolates tested yielded negative results, indicating if any, the occurrence rate of mcr-1/mcr-2 among STEC was very low in this agricultural region. This study provides valuable information such as sample size needed and methodologies for future surveillance programs of antimicrobial resistance. | 2017 | 29117270 |
| 2627 | 13 | 0.9998 | High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks. | 2021 | 33633708 |
| 1949 | 14 | 0.9998 | Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were bla(TEM) (76.09%), bla(CTX-M1) (71.74%), and bla(NDM) (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings. | 2023 | 37623228 |
| 5612 | 15 | 0.9998 | Epidemiological factors associated with the prevalence of mobile genetic elements, and antimicrobial resistance patterns in Klebsiella pneumoniae of farm environments in Bangladesh. Farm environments serve as reservoirs for antibiotic-resistant bacteria and mobile genetic elements (MGEs), spreading resistance genes. Klebsiella pneumoniae, a nosocomial opportunistic pathogen, often acquires resistance through MGEs. This study examined the prevalence, resistance patterns, and factors associated with MGEs in K. pneumoniae isolates, focusing on environmental and management practices. 48 pooled samples were collected from environmental niches in three major districts of Bangladesh including Dhaka, Barisal, and Sylhet and analyzed using standard microbiological techniques and PCR. Antibiotic susceptibility was assessed per CLSI (2020) guidelines, and multidrug-resistant (MDR) strains were identified. Genotypic resistance patterns and mobile genetic elements (MGEs), including class 1 integrons and plasmids, were detected via PCR. Fisher's exact test evaluated factors associated with MGEs. Overall, 66.66% tested positive for K. pneumoniae. Regarding resistance patterns, the highest resistance was observed to ertapenem (90.6%) and ampicillin (84%), while complete sensitivity was noted to several antibiotics, including amikacin and tigecycline. Among the tested isolates, 53.12% were identified as MDR. Genotypic analysis revealed that bla(CTX-M), bla(NDM-5,)bla(Oxa-1) and bla(Oxa-48) were the most prevalent. Additionally, the presence of MGEs including class 1 integron and IncQ type plasmid were significantly associated with factors such as poor sanitation, antibiotic misuse, and high cattle density, highlighting critical areas for intervention. This study revealed that MDR K. pneumoniae circulates in food animals' farm environments in Bangladesh, with environmental factors strongly linked to the presence of MGEs. Farm niches, particularly soil, act as key reservoirs of MGEs and resistance genes. Importantly, these also carry serious implications for human health, as resistance genes may transfer to clinical settings, exacerbating the burden of AMR. Strengthening environmental and agricultural policies through a One Health approach is essential to mitigate the public health threat posed by antimicrobial resistance. | 2025 | 40619416 |
| 2037 | 16 | 0.9998 | Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids. | 2024 | 38571400 |
| 2610 | 17 | 0.9998 | Antimicrobial Resistant Salmonella in Canal Water in Bangkok, Thailand: Survey Results Between 2016 and 2019. Antimicrobial resistance (AMR) in environmental reservoirs is an emerging global health concern, particularly in urban settings with inadequate wastewater management. This study aimed to investigate the prevalence and resistance profiles of Salmonella spp. in canal water in Bangkok and assess the distribution of key antibiotic resistance genes (ARGs). Between 2016 and 2019, a total of 1381 water samples were collected from 29 canals. Salmonella spp. were isolated using standard microbiological methods and tested for susceptibility to 13 antibiotics. Polymerase chain reaction (PCR) was used to detect extended-spectrum β-lactamase (ESBL) genes and class 1 integron. Salmonella was found in 89.7% of samples. Among these, 62.1% showed resistance to at least one antimicrobial, and 54.8% were multidrug-resistant (MDR). The highest resistance was observed against streptomycin (41.4%). ESBL genes, predominantly blaCTX-M, were detected in 72.2% of tested isolates, while class 1 integrons were found in 67.8%, indicating a strong potential for gene dissemination. The results highlight urban canals as critical environment reservoirs of AMR Salmonella serovars, posing significant public health risks, particularly where canal water is used for agriculture, household, or recreational purposes. Strengthened environmental surveillance and effective wastewater regulation are urgently needed to mitigate AMR bacteria transmission at the human-environment-animal interface. | 2025 | 41007477 |
| 2946 | 18 | 0.9998 | Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria. | 2015 | 26221083 |
| 1622 | 19 | 0.9998 | Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria. | 2021 | 34943653 |