# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2936 | 0 | 1.0000 | PREVALENCE OF CHLAMYDIACEAE AND TETRACYCLINE RESISTANCE GENES IN WILD BOARS OF CENTRAL EUROPE. Our aim was to investigate the occurrence and distribution of Chlamydia suis and other Chlamydiaceae in the wild boar (Sus scrofa) population of Switzerland and Northern Italy and the detection of tetracycline resistance genes by PCR. We collected a total of 471 conjunctival swabs (n=292), rectal swabs (n=147), and lung tissue samples (n=32) belonging to 292 wild boars. The prevalence of Chlamydiaceae in the investigated wild boar populations was very low (1.4%, 4/292). We found C. suis in rectal or conjunctival swabs but not in lung samples. The low chlamydial prevalence might be attributed to limited contacts between wild boars and outdoor domestic pigs due to strict biosecurity measures or limited numbers of rural pig herds. The tetA(C) gene fragment was detected in six samples, which were all negative for Chlamydiaceae, and was probably not of chlamydial origin but more likely from other bacteria. The low tetracycline resistance rate in wild boar might be explained by the lack of selective pressure. However, transmission of resistance genes from domestic pigs to wild boar or selective pressure in the environment could lead to the development and spread of tetracycline-resistant C. suis strains in wild boars. | 2020 | 32216676 |
| 2935 | 1 | 0.9999 | Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment. | 2022 | 36611686 |
| 5921 | 2 | 0.9998 | Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species. | 2003 | 12604515 |
| 5582 | 3 | 0.9998 | Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes. | 2017 | 28582978 |
| 2896 | 4 | 0.9998 | Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Resistance transfer from animals to humans (and vice versa) is a frequently discussed topic in human and veterinary medicine, albeit relevant studies focus mainly on phenotypic antibiotic resistance. In order to get a comparative insight regarding the distribution of selected resistance genes [tet(A/B/C/D/M/K/L/O/S/W/Z), sulI, II, III, str(A/B), aad(A)] in Escherichia coli of different origins, phenotypically tetracycline resistant isolates of porcine and human origin (n=137 and 152) were investigated using PCR. The most common gene was tet(A) in porcine, but tet(B) in human isolates (>55%). Tet(C/M/D) were rare (1-7%); tet(K/L/O/S/W/Z) were not detected. Co-occurrence of tet(A) and tet(B) was more frequent in human strains (11% vs. 2%). 88% of the porcine isolates had one, and 9% had two tet-genes. By contrast, only 69% of the human strains had one tet-gene, whereas 17% were carriers of two tet-determinants. The most common sulfonamide resistance gene was represented by sulII (40% in porcine, 62% in human isolates), followed by sulI. SulIII was present in eight isolates. Streptomycin resistance was mostly mediated by str(A)/str(B) in porcine, and by str(A)/str(B)/aad(A) in human strains (35% each). In one E. coli of human origin, 7 resistance genes were simultaneously detected. Co-occurrence of 5 or 6 resistance genes was more present in human strains, whereas porcine isolates carried more often only 1-4 genes. The huge diversities between gene patterns of bacteria of human and porcine origin indicate that genetic transfers between microorganisms from different sources are less frequent than transfers within populations of the same source. | 2010 | 19939589 |
| 2797 | 5 | 0.9998 | Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. We sought to determine the distribution of resistance and the tetracycline resistance genes among bacteria isolated from a swine confined animal feeding facility where tetracycline-containing feed had been in use for over 20 years. Samples collected from feed, hogs, hog houses, waste lagoon, soil, surface water and well water were screened for the presence of (a) resistant Escherichia coli and enterococci and (b) tetracycline-resistant strains of all species. Genomic DNA was extracted from the latter strain collection and fragments from 16S rDNA and ten tetracycline resistance genes (tetA, tetB, tetC, tetE, tetH, tetL, tetM, tetS, tetT and rumB) were polymerase chain reaction-amplified and a partial nucleotide sequence was obtained. In this environment, 77% of E. coli and 68% of enterococci isolated were tetracycline resistant. Tetracycline resistance was found in 26 different bacterial genera and in 60 species. Single resistance gene alleles (as defined by nucleotide sequence) were present in multiple species. There was evidence of gene recombination and multiple different tetracycline resistance genes were present in single bacterial isolates. These data provide further evidence for the widespread distribution of resistance genes in microbial populations in settings in which there is ongoing subtherapeutic antimicrobial use. | 2007 | 17287111 |
| 5515 | 6 | 0.9998 | Wildlife Waterfowl as a Source of Pathogenic Campylobacter Strains. BACKGROUND: The aim of the study was to determine whether free-living birds belonging to game species whose meat is used for human consumption can constitute a reservoir of pathogenic Campylobacter strains, spreading these bacteria to other hosts or directly contributing to human infection. METHODS: A total of 91 cloacal swabs were taken from different species of wildlife waterfowl to estimate the Campylobacter prevalence, the genetic diversity of the isolates, and the presence of virulence genes and to evaluate the antimicrobial resistance. RESULTS: The presence of Campylobacter spp. was confirmed in 32.9% of samples. Based on flaA-SVR sequencing, a total of 19 different alleles among the tested Campylobacter isolates were revealed. The virulence genes involved in adhesion were detected at high frequencies among Campylobacter isolates regardless of the host species. The highest resistance was observed for ciprofloxacin. The resistance rates to erythromycin and tetracycline were observed at the same level. CONCLUSIONS: These results suggest that wildlife waterfowl belonging to game species may constitute a reservoir of Campylobacter, spreading these bacteria to other hosts or directly contributing to human disease. The high distribution of virulence-associated genes among wildlife waterfowl Campylobacter isolates make them potentially able to induce infection in humans. | 2022 | 35215056 |
| 2828 | 7 | 0.9997 | The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances. | 2021 | 33558560 |
| 5935 | 8 | 0.9997 | Antibiotic resistance genes in anaerobic bacteria isolated from primary dental root canal infections. Fourty-one bacterial strains isolated from infected dental root canals and identified by 16S rRNA gene sequence were screened for the presence of 14 genes encoding resistance to beta-lactams, tetracycline and macrolides. Thirteen isolates (32%) were positive for at least one of the target antibiotic resistance genes. These strains carrying at least one antibiotic resistance gene belonged to 11 of the 26 (42%) infected root canals sampled. Two of these positive cases had two strains carrying resistance genes. Six out of 7 Fusobacterium strains harbored at least one of the target resistance genes. One Dialister invisus strain was positive for 3 resistance genes, and 4 other strains carried two of the target genes. Of the 6 antibiotic resistance genes detected in root canal strains, the most prevalent were blaTEM (17% of the strains), tetW (10%), and ermC (10%). Some as-yet-uncharacterized Fusobacterium and Prevotella isolates were positive for blaTEM, cfxA and tetM. Findings demonstrated that an unexpectedly large proportion of dental root canal isolates, including as-yet-uncharacterized strains previously regarded as uncultivated phylotypes, can carry antibiotic resistance genes. | 2012 | 23108290 |
| 5630 | 9 | 0.9997 | Preliminary Results on the Prevalence of Salmonella spp. in Marine Animals Stranded in Sicilian Coasts: Antibiotic Susceptibility Profile and ARGs Detection in the Isolated Strains. The presence of Salmonella spp. in marine animals is a consequence of contamination from terrestrial sources (human activities and animals). Bacteria present in marine environments, including Salmonella spp., can be antibiotic resistant or harbor resistance genes. In this study, Salmonella spp. detection was performed on 176 marine animals stranded in the Sicilian coasts (south Italy). Antibiotic susceptibility, by disk diffusion method and MIC determination, and antibiotic resistance genes, by molecular methods (PCR) of the Salmonella spp. strains, were evaluated. We isolated Salmonella spp. in three animals, though no pathological signs were detected. Our results showed a low prevalence of Salmonella spp. (1.7%) and a low incidence of phenotypic resistance in three Salmonella spp. strains isolated. Indeed, of the three strains, only Salmonella subsp. enterica serovar Typhimurium from S. coeruleoalba and M. mobular showed phenotypic resistance: the first to ampicillin, tetracycline, and sulphamethoxazole, while the latter only to sulphamethoxazole. However, all strains harbored resistance genes (bla(TEM), bla(OXA), tet(A), tet(D), tet(E), sulI, and sulII). Although the low prevalence of Salmonella spp. found in this study does not represent a relevant health issue, our data contribute to the collection of information on the spread of ARGs, elements involved in antibiotic resistance, now considered a zoonosis in a One Health approach. | 2021 | 34451393 |
| 5555 | 10 | 0.9997 | New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes. | 2012 | 22447595 |
| 2800 | 11 | 0.9997 | Occurrence of tetracycline resistance genes tet(M) and tet(S) in bacteria from marine aquaculture sites. Occurrence of tetracycline resistance genes encoding ribosomal protection proteins was examined in 151 tetracycline-resistant bacterial isolates from fish and seawater at coastal aquaculture sites in Japan and Korea. The tet(M) gene was detected in 34 Japanese and Korean isolates, which included Vibrio sp., Lactococcus garvieae, Photobacterium damsela subsp. piscicida, and unidentified Gram-positive bacteria. The majority of these bacterial isolates displayed high-level resistance with a minimum inhibitory concentrations (MICs) equal to or greater than 250 microg/ml of oxytetracycline and only four isolates had MICs less than 31.3 microg/ml. 16S rDNA RFLP typing of tet(M)-positive Vibrio isolates suggests that these are clonal populations of the same phylotype specific to a particular location. One Vibrio clone (phylotype III), however, is widely disseminated, being detected during different sampling years, at different locations, and in different fish species in both Japan and Korea. The tet(S) gene was detected in L. garvieae from yellowtail in Japan and in Vibrio sp. from seawater in Korea. This is the first report of tet(S) occurrence in Gram-negative facultative anaerobes. These results suggest that tet(M) and tet(S) genes are present in fish intestinal and seawater bacteria at aquaculture sites and could be an important reservoir of tetracycline resistance genes in the marine environment. | 2004 | 15268950 |
| 2897 | 12 | 0.9997 | The Role of Flies in Disseminating Plasmids with Antimicrobial-Resistance Genes Between Farms. Dissemination of antimicrobial resistance is a major global public health concern. To clarify the role of flies in disseminating antimicrobial resistance between farms, we isolated and characterized tetracycline-resistant Escherichia coli strains isolated from flies and feces of livestock from four locations housing swine (abattoir, three farms) and three cattle farms. The percentages of isolates from flies resistant to tetracycline, dihydrostreptomycin, ampicillin, and chloramphenicol (80.8%, 61.5%, 53.8%, and 50.0%, respectively) and those from animal feces (80.5%, 78.0%, 41.5%, and 46.3%, respectively) in locations housing swine were significantly higher than those from cattle farms (p<0.05). The rates of resistance in E. coli derived from flies reflected those derived from livestock feces at the same locations, suggesting that antimicrobial resistance spreads between livestock and flies on the farms. The results of pulsed-field gel electrophoresis (PFGE) analysis showed that, with a few exceptions, all E. coli isolates differed. Two pairs of tetracycline-resistant strains harbored similar plasmids with the same tetracycline-resistance genes, although the origin (fly or feces), site of isolation, and PFGE patterns of these strains differed. Therefore, flies may disseminate the plasmids between farms. Our results suggest that flies may be involved not only in spreading clones of antimicrobial-resistant bacteria within a farm but also in the widespread dissemination of plasmids with antimicrobial resistance genes between farms. | 2015 | 26061440 |
| 2885 | 13 | 0.9997 | Antimicrobial susceptibility of Streptococcus gallolyticus isolated from humans and animals. Susceptibilities to some antimicrobial agents and distribution of genes associated with resistance were examined in a total of 66 Streptococcus gallolyticus isolates and reference strains from various sources. All the tested bacteria were susceptible to vancomycin, penicillin G, and ampicillin. Most of the erythromycin-resistant isolates were observed in human clinical samples. Tetracycline and doxycycline resistance was prevalent in the isolates from human patients, diseased animals, and healthy broiler chickens, while the prevalence was significantly lower in the isolates from healthy mammals. All the isolates resistant to tetracycline possessed tet(M) and/or tet(L) and/or tet(O) genes. However, most isolates from healthy animals, which were susceptible to tetracycline, possessed the above-cited resistance genes, implying the potential ability for resistance under exposure to the corresponding antimicrobial agents. | 2013 | 23883848 |
| 2910 | 14 | 0.9997 | Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer. | 2010 | 20661548 |
| 1935 | 15 | 0.9997 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 2921 | 16 | 0.9997 | Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants. | 2007 | 17953612 |
| 5578 | 17 | 0.9997 | Resistance of Escherichia coli from healthy donors and from food--an indicator of antimicrobial resistance level in the population. Escherichia coli, being an important part of normal intestinal flora, is a frequent carrier of antimicrobial drug resistance markers and food is the most important vector of antimicrobial resistance genes between humans and animals. The aim of this study was to confirm the presence and frequency of resistance markers in Escherichia coli from intestinal flora and from food as an indicator of antimicrobial resistance level in the population. The experiment included 100 fecal Escherichia coli isolates from healthy donors, 50 isolated in 2007 and 50 in 2010, and 50 from food samples. The resistance markers were found in all groups of isolates. The resistance to ampicillin and cotrimoxazole was most commonly found. The finding of multi-drug-resistant strains and resistance to ciprofloxacin is important. The frequency of resistance markers was similar in food and feces. The results of this study show the need to introduce systematic monitoring of antimicrobial resistance of these bacteria. | 2011 | 21970069 |
| 5554 | 18 | 0.9997 | High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. BACKGROUND: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. METHODOLOGY/PRINCIPAL FINDINGS: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to > or =15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, bla(TEM-1), tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. CONCLUSIONS: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes. | 2009 | 20027306 |
| 2904 | 19 | 0.9997 | The maintenance in the oral cavity of children of tetracycline-resistant bacteria and the genes encoding such resistance. OBJECTIVES: To investigate the maintenance of tetracycline-resistant oral bacteria and the genes encoding tetracycline resistance in these bacteria in children (aged 4--6 years) over a period of 12 months. METHODS: Plaque and saliva samples were taken from 26 children. Tetracycline-resistant bacteria were isolated and identified. The types of resistance genes and their genetic locations were also determined. RESULTS: Fifteen out of 18 children harboured tetracycline-resistant (defined as having a MIC>or=8 mg/L) oral bacteria at all three time points. The median percentage of tetracycline-resistant bacteria at 0, 6 and 12 months was 1.37, 1.37 and 0.85%, respectively; these were not significantly different. The MIC(50) of the group was 64 mg/L at all three time points compared with the MIC(90), which was 64 mg/L at 0 months, and 128 mg/L at 6 and 12 months. The most prevalent resistant species were streptococci (68%), which were isolated at all three time points in 13 children. The most prevalent gene encoding tetracycline resistance was tet(M) and this was found in different species at all three time points. For the first time, tet(32) was found in Streptococcus parasanguinis and Eubacterium saburreum. PCR and Southern-blot analysis (on isolates from three of the children) showed that the tet(M) gene was located on a Tn916-like element and could be detected at all three time points, in four different genera, Streptococcus, Granulicatella, Veillonella and Neisseria. CONCLUSIONS: The results of this study show that tetracycline-resistant bacteria and tet(M) are maintained within the indigenous oral microbiota of children, even though they are unlikely to have been directly exposed to tetracycline. | 2005 | 16027144 |