# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2915 | 0 | 1.0000 | Detection of class 1 integron-associated gene cassettes and tetracycline resistance genes in Escherichia coli isolated from ready to eat vegetables. BACKGROUND: Ready to eat (RTE) vegetables are easily accessible healthy foods that are commonly consumed globally, including in Indonesia. However, these RTE vegetables contain potential contamination from pathogens and multi-drug resistant bacteria. Therefore, in the present study, we examined the presence of tetracycline-resistant E. coli (TRE) isolates from RTE vegetables. METHODS: Susceptibility to antimicrobial agents was determined using the Kirby-Bauer disc diffusion method. Characterisation of antibiotic resistant genes was performed using PCR and sequencing of tetracycline resistant gene, integron and gene cassette from the TRE isolates. RESULTS: The isolates collected in this study were resistant not only to tetracycline, but also to streptomycin. Some isolates also displayed resistance to kanamycin (77.8%), chloramphenicol (11.1%), and ciprofloxacin (5.6%). All of the isolates contained integrons (intI1) and the tetA gene; tetB was not detected in our study. Further analysis showed that some isolates (38.8%) contained the dfrA7 gene cassette, which encodes dihydrofolate reductase, which is responsible for resistance to trimethoprim. Of all the isolates that presented integrons, 11 isolates (61.1%) did not carry gene cassettes. These empty integrons have the potential to convert themselves rapidly into multigraviton strains. CONCLUSIONS: TRE isolates contain the tetA gene and integron 1. Only 38.8% of the isolates that have been identified contain the dfrA7 gene cassette, which is responsible for trimethoprim antibiotic resistance. Further identification of genes conferring resistance to other antibiotics is necessary to better characterise antibiotic resistance. | 2020 | 32566218 |
| 2910 | 1 | 0.9999 | Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer. | 2010 | 20661548 |
| 2914 | 2 | 0.9999 | The genetic background for streptomycin resistance in Escherichia coli influences the distribution of MICs. OBJECTIVES: The aim of this study was to investigate the genetic background for streptomycin resistance in Escherichia coli and perform analysis of the MICs in relation to genetic background. METHODS: The 136 strains investigated, with streptomycin MICs of > or =16 mg/L, originated from meat and meat products and were collected within the frame of the Norwegian monitoring programme for antimicrobial resistance in bacteria from feed, food and animals (NORM-VET). PCR was carried out for detection of the streptomycin resistance genes strA-strB and the integron-associated aadA gene cassettes. RESULTS: The strA-strB genes and/or an aadA gene cassette were detected in 110 of the 136 (80.9%) strains investigated. The strA-strB genes were the most prevalent, and were detected in 90 strains. The aadA gene cassettes were detected in 29 strains, and nine strains harboured both the strA-strB genes and an aadA gene cassette. The distribution of MICs differed considerably between isolates harbouring the strA-strB genes (solely) (MIC(50) = 128 mg/L) and isolates harbouring an aadA gene cassette (solely) (MIC(50) = 16 mg/L). Strains harbouring both the strA-strB genes and an aadA gene cassette had higher streptomycin MICs than those harbouring either alone. CONCLUSIONS: The distribution of streptomycin MICs in E. coli can be greatly influenced by the genes encoding resistance to streptomycin. The strA-strB genes are probably involved in conferring high-level resistance to streptomycin, whereas the opposite seems to be the case for the aadA gene cassettes. The low-level streptomycin resistance, caused by the presence of aadA gene cassettes in integrons, represents an obstacle in classifying E. coli as susceptible or resistant to streptomycin. Furthermore, the determination of an epidemiological cut-off value for surveillance purposes is also complicated by dissemination of integrons containing the aadA cassettes. | 2005 | 15897222 |
| 2922 | 3 | 0.9999 | Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination. | 2008 | 19120920 |
| 2690 | 4 | 0.9999 | Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance. | 2018 | 29148895 |
| 5926 | 5 | 0.9999 | Prevalence and Characterization of Gentamicin Resistance Genes in Escherichia coli Isolates from Beef Cattle Feces in Japan. Gentamicin is an important antibiotic for the treatment of opportunistic infections in the clinical field. Gentamicin-resistant bacteria have been detected in livestock animals and can be transmitted to humans through the food supply or direct contact. We have previously revealed that gentamicin-resistant Escherichia coli are distributed at a comparatively high rate from beef cattle in Japan, but few studies have focused on the molecular epidemiology of gentamicin-resistant bacteria. To understand these bacteria, this study examined the prevalence of various gentamicin resistance genes in gentamicin-resistant E. coli isolates from beef cattle feces. Of the 239 gentamicin-resistant E. coli isolates, the presence of the aacC2, aadB, or aac(3)-VIa genes was confirmed in 147, 84, and 8 isolates, respectively. All aac(3)-VIa-harboring isolates had an MIC value of 64 μg/mL for gentamicin and exhibited resistance to 11 antibiotic agents. An analysis of the representative aac(3)-VIa-harboring E. coli strain GC1-3-GR-4 revealed that the aac(3)-VIa gene was present on the IncA/C plasmid together with the aadA and bla(CMY) genes. Furthermore, the upstream region of the aac(3)-VIa gene contained the aadA gene and the class 1 integron-integrase gene (intI1). The aac(3)-VIa gene was detected for the first time in Japan and is expected to be able to transfer between bacteria via the IncA/C plasmid and integron. These results reveal the expansion of the distribution or diversity of gentamicin resistance genes in Japan. | 2022 | 35704076 |
| 2921 | 6 | 0.9999 | Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants. | 2007 | 17953612 |
| 2691 | 7 | 0.9999 | Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Bacteria isolated from companion animals are attracting concerns in a view of public health including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of 18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were classified into phylogroups, examined for the presence of resistance genes and biofilm-formation capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L) and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a potential reservoir of resistance genes. | 2021 | 34205399 |
| 2966 | 8 | 0.9999 | Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract. | 2024 | 38191447 |
| 2326 | 9 | 0.9999 | Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Resistance to antimicrobial compounds in E. coli strains is increasing. Integrons are mobile genetic elements that lead to the spread and transfer of antibiotic resistance genes in bacteria. The aim of the present study was to determine the frequency of class 1 and 2 integrons as well as the antimicrobial resistance in E.coli strains isolated from urinary tract infections (UTIs). A total of 100 clinical isolates of uropathogenic E. coli (UPEC) were collected from patients having UTIs. These strains were identified using biochemical tests. The antibiotic susceptibility patterns of the isolated bacteria were determined in accordance with the standard method recommended by the clinical and laboratory standards institute (CLSI). The presence of class 1 and 2 integrons was determined by PCR method. The most frequent antibiotic resistance was observed to ampicillin (72%), co-trimoxazole (66%), and nalidixic acid (62%). The highest sensitivity was seen to amikacine (11%) and gentamicin (20%). The multi-drug resistance (MDR) was observed in 80% of E. coli isolates. 70% and 3% of E. coli isolate possessed class 1 and 2 integrons, respectively. Our data suggest that the antimicrobial resistance to some antibiotics as well as the frequency of class 1 and 2 integrons is very high in E. coli strains. Moreover, class 1 integrons are correlated with resistance to ampicillin, gentamicin, ciprofloxacin, co-trimoxazole, and nalidixic acid. Therefore, it is very important to monitor integron-induced drug resistance, especially class 1 integron, in order to control the urinary tract infections causing by MDR E.coli strains. | 2020 | 33680029 |
| 2913 | 10 | 0.9999 | Distribution of resistance genetic determinants among Vibrio cholerae isolates of 2012 and 2013 outbreaks in IR Iran. The objective of this study was to characterize antimicrobial resistance determinants in relation to antimicrobial susceptibility and genotyping profile in 20 clinical isolates of Vibrio cholerae. All of the isolates were resistant to streptomycin. The second most prevalent resistance was observed to trimethoprim (75%), co-trimoxazole (60%), tetracycline (50%), and minocycline (45%). About 50% of the isolates fulfilled the criteria of Multi Drug Resistance (MDR) phenotype. None of the isolates carried tet A, B, C, and, D determinants. This finding shows that tetracycline resistance determinants recognized so far, does not satisfactorily describe the 50% tetracycline resistance phenotype in this study, suggesting the possible contribution of other not yet characterized resistance mechanisms involved. Class 1 integron, widely distributed among enteric bacteria, was not detected among V. cholerae strains under study. Conversely, 100% of the isolates harbored SXT constin((int)), among which 70% were positive for dfrA1, strA, and strB genes. The sul1gene was present in 60% of the isolates while none of them contained floR gene. All the isolates uniformly appeared to be identical in fingerprinting profiles expected from outbreak strains. In conclusion, SXT element with its mosaic structure was the exclusive antimicrobial resistance determinant of clonal V. cholerae isolates taken from outbreaks of 2012 and 2013 in Iran. | 2017 | 28062293 |
| 5955 | 11 | 0.9999 | Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Despite a trend of declining consumption, resistance to co-trimoxazole has increased during a 12-year period in Stockholm. The molecular background to this surprising development was investigated by using PCR to screen for integrons and specific resistance genes, followed by sequence analysis of selected integrons, in 105 clinical urinary isolates of Gram-negative bacteria selected partly for trimethoprim resistance. Sixty-five integrons of class 1 or 2 were detected in a subset of 59 isolates, and of these positive isolates, all but one were resistant to trimethoprim. However, 11 isolates were resistant to trimethoprim, but negative for integrons. Isolates positive for integrons were resistant to an average of 4.2 antibiotics, compared with 1.9 antibiotics for integron-negative isolates. Despite this, the only gene cassettes identified in 19 class 1 integrons analysed were dfr and aadA cassettes. Thus, only resistance to trimethoprim, streptomycin, spectinomycin and sulphonamides could be explained by the presence of integrons in these isolates. A new dfr gene, named dfrA22, was discovered as a single gene cassette in a class 1 integron. In addition, sulphonamide resistance in many isolates was caused by carriage of sul2, which has no known association with integrons. Resistance to co-trimoxazole and many other antibiotics was thus not accounted for fully by the presence of integrons in these isolates. | 2005 | 15715715 |
| 2909 | 12 | 0.9999 | Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance. | 2006 | 16330169 |
| 2696 | 13 | 0.9999 | Carriage of antimicrobial resistant Escherichia coli in adult intestinal flora. Knowledge of antibiotic resistance in bacteria strains colonizing healthy people is important for several reasons, one of which is that; these organisms form one of the largest reservoirs of resistant genes. Frequency of resistance to eleven different antimicrobial agents was examined in faecal flora of adults with no history of recent antimicrobial treatment. Using the disc diffusion sensitivity test, 106 strains of Escherichia coli were examined, 68% of these were resistant to tetracycline, and 57% were resistant to ampicillin and cotrimoxazole respectively. There was no resistance to cefuroxime but resistance to ceftazidime was 13%. Fifty six out of the eighty eight (64%) isolates, which showed any resistance, were resistant to three or more antimicrobials. The most common resistant pattern was to three drugs tetracycline, ampicillin and cotrimoxazole. Six strains were susceptible to all antibiotics. One strain of Escherichia coli was resistant to eight antimicrobials. Thirty per cent of the Escherichia coli were resistant to gentamicin. This study reveals a high prevalence of resistant bacteria in faecal flora of healthy adults. | 2002 | 12081343 |
| 2931 | 14 | 0.9999 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 2686 | 15 | 0.9999 | Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers. | 2017 | 28679083 |
| 1621 | 16 | 0.9999 | Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment. | 2021 | 34451523 |
| 2926 | 17 | 0.9999 | Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. A collection of 116 motile Pseudomonas spp. and 92 Aeromonas spp. isolated from 15 Vietnamese intensive catfish farms was analyzed to examine the molecular antibiotic resistance characteristics and the transferability of resistance markers within and between species. High levels of resistance to ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, chloramphenicol, and nitrofurantoin were observed. The percentage of multiple drug resistance of Pseudomonas spp. and Aeromonas spp. isolates was 96.6% and 61.9%, respectively. The multiple antibiotic resistance (MAR) index mean values of 0.457 and 0.293 of Pseudomonas and Aeromonas isolates, respectively, indicated that these isolates were exposed to high risk sources of contamination where antibiotics were commonly used. Approximately 33% of Pseudomonas spp. and 28% of Aeromonas spp. isolates from catfish contained class 1 integrons, but no class 2 integrons were detected. Several common resistance genes including aadA, dfrA and catB were harbored in class 1 integrons. Large plasmids (>55 kb) were frequently detected in 50% and 71.4% of the plasmids extracted from Pseudomonas and Aeromonas isolates, respectively. Conjugation and transformation experiments demonstrated the successful transfer of all or part of the resistance phenotypes of catfish isolates to the recipient strains, including laboratory strains and strains isolated from this study. These results highlight the likely role of catfish bacteria as a reservoir of antibiotic resistant, Gram-negative bacteria harboring a pool of mobile genetic elements that can readily be transferred intra- and interspecies. To our knowledge, this is the first report on molecular characterization of antibiotic resistance of bacteria isolated from catfish in Vietnam. | 2014 | 24629778 |
| 2688 | 18 | 0.9998 | Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area. | 2025 | 40298585 |
| 2687 | 19 | 0.9998 | Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. INTRODUCTION: E. coli is a ubiquitous bacterium commonly used as a sentinel in antimicrobial resistance studies. Here, E. coli was isolated from three groups (sick calves, healthy calves and bedding material), to assess the presence of antimicrobial resistance, describe resistance profiles, and compare these resistances among groups. MATERIAL AND METHODS: Samples were collected from calves and calving pens from 20 dairy farms. Using the disc diffusion method, E. coli isolates were screened for antimicrobial resistance against seven antimicrobials: Amoxicillin, Ceftiofur, Gentamicin, Enrofloxacin, Trimethoprim-sulfamethoxazole, Florfenicol and Oxytetracycline. Isolates resistant to all these seven antimicrobials were tested again against an extended 19 antimicrobial drug panel and for the presence of the most common E. coli pathogenicity genes through PCR. RESULTS & DISCUSSION: Three hundred forty-nine E. coli isolates were obtained; most isolates were resistant to a single antimicrobial, but 2.3% (8) were resistant to 16 to 19 of the antimicrobials tested. The group with the highest percentage of multiresistant isolates was the calves with diarrhea group. Younger calves provided samples with higher antimicrobial resistance levels. CONCLUSIONS: There is a high rate of antimicrobial resistance in dairy farms calving pens. These bacteria could not only be a resistance gene reservoir, but also could have the potential to spread these determinants through horizontal gene transfer to other susceptible bacteria. Measures should be taken to protect colonization of younger calves, based on hygienic measures and proper management. | 2019 | 31844709 |