Soil Bacteria in Urban Community Gardens Have the Potential to Disseminate Antimicrobial Resistance Through Horizontal Gene Transfer. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
290301.0000Soil Bacteria in Urban Community Gardens Have the Potential to Disseminate Antimicrobial Resistance Through Horizontal Gene Transfer. Fifteen soil and 45 vegetable samples from Detroit community gardens were analyzed for potential antimicrobial resistance contamination. Soil bacteria were isolated and tested by antimicrobial susceptibility profiling, horizontal gene transfer, and whole-genome sequencing. High-throughput 16S rRNA sequencing analysis was conducted on collected soil samples to determine the total bacterial composition. Of 226 bacterial isolates recovered, 54 were from soil and 172 from vegetables. A high minimal inhibitory concentration (MIC) was defined as the MIC greater than or equal to the resistance breakpoint of Escherichia coli for Gram-negative bacteria or Staphylococcus aureus for Gram-positive bacteria. The high MIC was observed in 63.4 and 69.8% of Gram-negative isolates from soil and vegetables, respectively, against amoxicillin/clavulanic acid, as well as 97.5 and 82.7% against ampicillin, 97.6 and 90.7% against ceftriaxone, 85.4 and 81.3% against cefoxitin, 65.8 and 70.5% against chloramphenicol, and 80.5 and 59.7% against ciprofloxacin. All Gram-positive bacteria showed a high MIC to gentamicin, kanamycin, and penicillin. Forty of 57 isolates carrying tetM (70.2%) successfully transferred tetracycline resistance to a susceptible recipient via conjugation. Whole-genome sequencing analysis identified a wide array of antimicrobial resistance genes (ARGs), including those encoding AdeIJK, Mex, and SmeDEF efflux pumps, suggesting a high potential of the isolates to become antimicrobial resistant, despite some inconsistency between the gene profile and the resistance phenotype. In conclusion, soil bacteria in urban community gardens can serve as a reservoir of antimicrobial resistance with the potential to transfer to clinically important pathogens, resulting in food safety and public health concerns.202134887843
290910.9999Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Clostridium perfringens is a well documented cause of a mild self-limiting diarrhea and a potentially fatal acute hemorrhagic diarrheal syndrome in the dog. A recent study documented that 21% of canine C. perfringens isolates had MIC's indicative of resistance to tetracycline, an antimicrobial commonly recommended for treatment of C. perfringens-associated diarrhea. The objective of the present study was to further evaluate the antimicrobial susceptibility profiles of these isolates by determining the prevalence of specific resistance genes, their expression, and ability for transference between bacteria. One hundred and twenty-four canine C. perfringens isolates from 124 dogs were evaluated. Minimum inhibitory concentrations of tetracycline, erythromycin, tylosin, and metronidazole were determined using the CLSI Reference Agar Dilution Method. All isolates were screened for three tetracycline resistance genes: tetA(P), tetB(P) and tetM, and two macrolide resistance genes: ermB and ermQ, via PCR using primer sequences previously described. Ninety-six percent (119/124) of the isolates were positive for the tetA(P) gene, and 41% (51/124) were positive for both the tetA(P) and tetB(P) genes. No isolates were positive for the tetB(P) gene alone. Highly susceptible isolates (MIC< or = 4 microg/ml) were significantly more likely to lack the tetB(P) gene. One isolate (0.8%) was positive for the ermB gene, and one isolate was positive for the ermQ gene. The tetM gene was not found in any of the isolates tested. Two out of 15 tested isolates (13%) demonstrated transfer of tetracycline resistance via bacterial conjugation. Tetracycline should be avoided for the treatment of C. perfringens-associated diarrhea in dogs because of the relatively high prevalence of in vitro resistance, and the potential for conjugative transfer of antimicrobial resistance.200616330169
291020.9999Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in strains from humans (35 isolates), chickens (15 isolates), food (21 isolates), soil (16 isolates) and veterinary sources (6 isolates) was determined, and tetracycline-resistance genes were detected. Resistance was most common in strains isolated from chickens, followed by those from soils, clinical samples and foods. The most highly resistant strains were found among clinical and food isolates. tetA(P) was the most common resistance gene, and along with tetB(P) was found in all resistant strains and some sensitive strains. One tetracycline-resistant food isolate had an intact tet(M) gene. However, PCR fragments of 0.4 or 0.8 kb with high degrees of identity to parts of the tet(M) sequences of other bacteria were found, mainly in clinical isolates, and often in isolates with tetB(P). No correlation between level of sensitivity to tetracycline or minocycline and the presence of tetA(P), tetB(P) or part of tet(M) was found. The presence of part of tet(M) in some strains of C. perfringens containing tetB(P) may have occurred by recent gene transfer.201020661548
553430.9999Antibiotic resistance in faecal microbiota of Greek healthy infants. Increasing use of antibiotics for the treatment of infectious diseases and also for non-therapeutic reasons (agriculture, animal husbandry and aquaculture) has led to the increasing incidence of antibiotic resistance and the ineffectiveness of antimicrobial treatment. Commensal intestinal bacteria are very often exposed to the selective pressure of antimicrobial agents and may constitute a reservoir of antibiotic resistance determinants that can be transferred to pathogens. The present study aimed to investigate the antibiotic susceptibility profile and the presence of selected resistance genes in cocci isolated from the faecal microbiota of 35 healthy, full-term infants at 4, 30 and 90 days after delivery. A total of 148 gram-positive, catalase-negative cocci were isolated and tested for susceptibility to 12 different antibiotics by disk-diffusion technique. Multiplex PCR analysis was performed for the identification of Enterococcus spp. isolates and the simultaneous detection of vancomycin-resistance genes. PCR-based methodology was used also for identification of tetracycline and erythromycin resistance determinants. Identification results indicated E. faecalis as the predominant species (81 strains), followed by E. faecium, E. casseliflavus/E. flavescens and E. gallinarum. High prevalence of resistance to tetracycline (39.9%), erythromycin (35.1%), vancomycin (19.6%) and to nucleic acid synthesis inhibitors was detected. PCR data revealed 24 out of 52 erythromycin-resistant isolates carrying the ermB gene and 32 out of 59 tetracycline-resistant strains carrying tet genes, with tet(L) determinant being the most frequently detected. Only intrinsic vancomycin resistance (vanC1 and vanC2/C3) was reported among tested isolates. In conclusion, erythromycin and tetracycline acquired resistant traits are widespread among faecal cocci isolates from Greek, healthy infants under no apparent antimicrobial selective pressure.201021831766
290540.9999Scarce detection of mobile erm genes associated with tetQ in Bacteroides and Parabacteroides from Costa Rica. The frequency of finding of clindamycin-resistant anaerobic bacteria in clinical samples has doubled from 2008 to 2010 in Costa Rica. To determine whether this increase is due to dissemination of erm genes aided by tetQ elements, we analyzed 100 isolates of Bacteroides or Parabacteroides from a regional hospital, a national hospital, and the community. Antimicrobial susceptibilities were recorded with a broth micro-dilution method and erm genes were detected by PCR and Southern blotting. In addition, plasmid isolation and mating experiments were performed to clarify the location and mobility of the detected erm genes. Resistance to clindamycin was by far more frequent in the regional hospital (72%) than in the national hospital (29%) and the community (26%). Resistance to tetracycline was even more common, with the community (85%) outweighing the hospitals (71-72%). While MIC of clindamycin were higher in the hospitals than in the community (P < 0.05), the opposite was seen for tetracycline (P < 0.0001). Of the sought-after genes, only ermG (n = 2), ermA (n = 1), and ermF (n = 1) were detected in the hospitals and ermF in the community (n = 2). In opposition to the low frequency of finding of erm genes, 71% of the isolates were positive for tetQ. None of the detected genes were encoded on plasmids. Only three isolates from the hospitals transferred their erm genes laterally. By contrast, 13 hospital isolates and two community isolates transferred tetQ. Despite the widespread finding of tetracycline-resistant tetQ-positive bacteria, mobile erm genes were rare in our bacterial collection. We conclude that the detected erm genes are likely not included in typical conjugative transposons of Bacteroides and Parabacteroides.201323528984
239950.9999Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: Phenotypic and genotypic characteristics. The enterococci are ubiquitous bacteria able to colonize the human and animal gastrointestinal tracts and fresh and fermented food products. Their highly plastic genome allows Enterococcus spp. to gain resistance to multiple antibiotics, making infections with these organisms difficult to treat. Food-borne enterococci could be carriers of antibiotic resistance determinants. The goal of this work was to study the characteristics of Enterococcus spp. in fermented milk products from Poland and their antibiotic resistance gene profiles. A total of 189 strains were isolated from 182 dairy products out of 320 samples tested. The predominant species were Enterococcus faecium (53.4%) and Enterococcus faecalis (34.4%). Isolates were resistant to streptomycin (29.1%), erythromycin (14.3%), tetracycline (11.6%), rifampicin (8.7%), and tigecycline (8.1%). We also detected 2 vancomycin-resistant and 3 linezolid-resistant strains; however, no vanA or vanB genes were identified. A total of 57 high-level aminoglycoside resistance strains (30.2%) were identified, most of which have the ant(6')-Ia gene, followed by the aac(6')-Ie-aph(2″)-Ia and aph(3″)-IIIa genes. Resistance to tetracycline was most often conferred by tetM and tetL genes. Macrolide resistance was most frequently encoded by ermB and ermA genes. Conjugative mobile genetic element (transposon Tn916-Tn1545) was identified in 15.3% of the strains, including 96.3% of strains harboring the tetM gene. This study found that enterococci are widely present in retail ready-to-eat dairy products in Poland. Many isolated strains are antibiotic resistant and carry transferable resistance genes, which represent a potential source of transmission of multidrug-resistant bacteria to humans.202032197843
269160.9999Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Bacteria isolated from companion animals are attracting concerns in a view of public health including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of 18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were classified into phylogroups, examined for the presence of resistance genes and biofilm-formation capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L) and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a potential reservoir of resistance genes.202134205399
196570.9999Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents.202438393089
293180.9999Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry.201726969806
290490.9999The maintenance in the oral cavity of children of tetracycline-resistant bacteria and the genes encoding such resistance. OBJECTIVES: To investigate the maintenance of tetracycline-resistant oral bacteria and the genes encoding tetracycline resistance in these bacteria in children (aged 4--6 years) over a period of 12 months. METHODS: Plaque and saliva samples were taken from 26 children. Tetracycline-resistant bacteria were isolated and identified. The types of resistance genes and their genetic locations were also determined. RESULTS: Fifteen out of 18 children harboured tetracycline-resistant (defined as having a MIC>or=8 mg/L) oral bacteria at all three time points. The median percentage of tetracycline-resistant bacteria at 0, 6 and 12 months was 1.37, 1.37 and 0.85%, respectively; these were not significantly different. The MIC(50) of the group was 64 mg/L at all three time points compared with the MIC(90), which was 64 mg/L at 0 months, and 128 mg/L at 6 and 12 months. The most prevalent resistant species were streptococci (68%), which were isolated at all three time points in 13 children. The most prevalent gene encoding tetracycline resistance was tet(M) and this was found in different species at all three time points. For the first time, tet(32) was found in Streptococcus parasanguinis and Eubacterium saburreum. PCR and Southern-blot analysis (on isolates from three of the children) showed that the tet(M) gene was located on a Tn916-like element and could be detected at all three time points, in four different genera, Streptococcus, Granulicatella, Veillonella and Neisseria. CONCLUSIONS: The results of this study show that tetracycline-resistant bacteria and tet(M) are maintained within the indigenous oral microbiota of children, even though they are unlikely to have been directly exposed to tetracycline.200516027144
5582100.9999Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes.201728582978
2922110.9999Tetracycline-resistance genes in gram-negative isolates from estuarine waters. AIMS: To investigate the diversity and dissemination of tetracycline resistance genes in isolates from estuarine waters. METHODS AND RESULTS: Forty-two out of 164 multi-resistant isolates previously obtained were resistant or less-susceptible to tetracycline, as evaluated by the disc diffusion method. Minimal inhibitory concentration for resistant bacteria ranged from 16 to 256 mg l(-1). Screening of tet genes by polymerase chain reaction showed that 88% of the isolates carried at least one of the genes tested, namely tet(A) (present in 13 isolates), tet(B) (present in 13 isolates), tet(C) (present in 3 isolates), tet(D) (present in 1 isolate), tet(E) (present in 6 isolates) and tet(M) (present in 1 isolate). One isolate carried tet(A) and tet(M). To our knowledge, this study presents the first description of a tet(D) gene in Morganella morganii. Hybridization revealed that tet genes were plasmid-located in 31% of the isolates. Those isolates were included as donors in conjugation experiments and 38% transferred tetracycline resistance. CONCLUSIONS: A considerable diversity of tet genes was detected in the estuary. Frequently, these genes were associated with plasmids and could be transferred to Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The results presented provide further evidence of the role played by estuarine reservoirs in antibiotic resistance maintenance and dissemination.200819120920
2688120.9999Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area.202540298585
2690130.9999Characterization of Cefotaxime- and Ciprofloxacin-Resistant Commensal Escherichia coli Originating from Belgian Farm Animals Indicates High Antibiotic Resistance Transfer Rates. Food-producing animals represent one of the sources of antibiotic resistant commensal bacteria. There is an increasing awareness that these bacteria might have the potential to transfer their resistance genes to other (pathogenic) bacteria. In this study, 50 commensal Escherichia coli strains originating from food-producing animals and resistant to the "highest priority, critically important antibiotics" cefotaxime and/or ciprofloxacin, were selected for further characterization. For each strain (i) an antibiogram, (ii) the phylogenetic group, (iii) plasmid replicon type, (iv) presence and identification of integrons, and (v) antibiotic resistance transfer ratios were determined. Forty-five of these strains were resistant to 5 or more antibiotics, and 6 strains were resistant to 10 or more antibiotics. Resistance was most common to ampicillin (100%), sulfamethoxazole, ciprofloxacin (82%), trimethoprim, tetracycline (74%), cefotaxime, (70%) and ceftazidime (62%). Phylogenetic groups A (62%) and B1 (26%) were most common, followed by C (8%) and E (4%). In 43 strains, more than 1 replicon type was detected, with FII (88%), FIB (70%), and I1 (48%) being the most encountered types. Forty strains, positive for integrons, all harbored a class I integron and seven of them contained an additional class II integron. No class III integrons were detected. The antibiotic resistance transfer was assessed by liquid mating experiments. The transfer ratio, expressed as the number of transconjugants per recipient, was between 10(-5) and 10(0) for cefotaxime resistance and between 10(-7) and 10(-1) for ciprofloxacin resistance. The results of the current study prove that commensal E. coli in food-production animals can be a source of multiple resistance genes and that these bacteria can easily spread their ciprofloxacin and cefotaxime resistance.201829148895
5921140.9999Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
2861150.9999Antibiotic Resistance Profiles and Genomic Analysis of Endophytic Bacteria Isolates from Wild Edible Fungi in Yunnan. The use of antibiotics has led to the emergence of antibiotic resistance, posing significant challenges in the prevention, control, and treatment of microbial diseases, while threatening public health, the environment, and food safety. In this study, the antibiotic resistance phenotypes and genotypes of 56 endophytic bacteria isolates from three species of wild edible fungi in Yunnan were analyzed using the Kirby-Bauer disk diffusion method and PCR amplification. The results revealed that all isolates were sensitive to ofloxacin, but resistance was observed against 17 other antibiotics. Specifically, 55, 53, and 51 isolates exhibited resistance to amoxicillin, penicillin, and vancomycin, respectively. Antibiotic resistance gene (ARG) detection indicated that the sulfonamide sul1 gene had the highest detection rate (53.57%). Excluding the ARG that was not detected, the lowest detection rates were the sulfonamide sul2 and sul3 genes, both at 1.79%. Among six tetracycline resistance genes, only tetK and tetM were detected. For β-lactam antibiotics, blaTEM, blaVIM, and blaSHV genes were present, while blaOXA was absent. In aminoglycoside resistance genes, aadB was not detected, while detection rates for aac(3')-IIa, acrB, and aadA1 were 3.57%, 1.79%, and 37.5%, respectively. The chloramphenicol Cat gene was detected at a rate of 14.29%, whereas floR was absent. For polypeptide resistance, VanC was detected at 3.57%, with EmgrB not detected. All three quinolone genes were detected, with detection rates of 8.92% for GyrA, 39.29% for GyrB, and 37.5% for ParC. Through phylogenetic analysis, 12 isolates that are closely related to ten common foodborne pathogenic bacteria were further selected for whole-genome sequencing and assembly. Gene annotations revealed that each isolate contained more than 15 ARGs and over 30 virulence factors. Notably, the detection rate of antibiotic resistance phenotypes was higher than that of genotypes, highlighting the importance of studying phenotypic antibiotic resistance that lacks identifiable ARGs. This study enriches the research on endophytes in wild edible fungi and provides new data for microbial ecology and antibiotic resistance research. It also offers critical insights for monitoring microbial antibiotic resistance in wild edible fungi and potentially other food sources, contributing to more effective strategies for ecological protection, sustainable agricultural development, and public health security.202540005728
2921160.9999Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants.200717953612
2932170.9999Resistance to Sulfonamides and Dissemination of sul Genes Among Salmonella spp. Isolated from Food in Poland. Antimicrobial resistance of pathogenic bacteria, including Salmonella spp., is an emerging problem of food safety. Antimicrobial use can result in selection of resistant organisms. The food chain is considered a route of transmission of resistant pathogens to humans. In many European countries, sulfonamides are one of the most commonly used antimicrobials. The aim of our investigation was to assess the prevalence of sul genes and plasmid occurrence among sulfonamide-resistant Salmonella spp. Eighty-four sulfonamide-resistant isolates were collected in 2008 and 2013 from retail products in Poland. Minimal inhibitory concentration of all of these isolates was ≥1024 μg/mL. Resistant isolates were tested for the presence of sul1, sul2, sul3, and int1 genes by using multiplex polymerase chain reaction. In total, 44.0% (37/84) isolates carried the sul1 gene, 46.4% (39/84) were sul2 positive, while the sul3 gene was not detected in any of the sulfonamide-resistant isolates tested. It was found that 3.6% (3/84) of resistant Salmonella spp. contained sul1, sul2, and intI genes. All 33 intI-positive isolates carried the sul1 gene. Eleven of the sulfonamide-resistant isolates were negative for all the sul genes. Most of the sulfonamide-resistant Salmonella spp. harbored plasmids; only in eight isolates were no plasmids detected. Generally, the size of the plasmids ranged from approximately 2 kb to ≥90 kb. Our results revealed a relatively a high prevalence of sulfonamides-resistant Salmonella spp. isolated from retail food. Additionally, we have detected a high dissemination of plasmids and class 1 integrons that may enhance the spread of resistance genes in the food chain.201525785781
2389180.9999Antibiotic Resistance of LACTOBACILLUS Strains. The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively).201931555856
2731190.9998Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. BACKGROUND: Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. METHODOLOGY: Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. RESULTS: Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. CONCLUSIONS: This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this strain could shuttle resistance plasmids to pathogenic bacteria.201526108344