# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2890 | 0 | 1.0000 | Genetic diversity and antimicrobial resistance of Escherichia coli from Tagus estuary (Portugal). Fecal pollution of surface waters is a current world-wide public health concern and may contribute for the dissemination of antibiotic resistance. The Tagus estuary located in the south of Portugal is one of the largest wetlands in the west coast of Europe. In this study, water samples were collected from seven stations with different anthropic pressures along the estuary and evaluated for water quality indicator bacteria. Escherichia coli isolates (n=350) were typed by REP-PCR. Representatives of each REP profile (n=220) were evaluated phenotypically for resistance to 17 antibiotics and characterized in terms of phylogenetic group. Resistant isolates were screened for the presence of antibiotic resistance genes (tet(A), tet(B), sul1, sul2, qnrA, qnrB, qnrS, aacA4-cr, bla(TEM), bla(SHV), bla(CTX-M), bla(CMY-like), bla(IMP), bla(VIM)) and integrase genes (intI1 and intI2). The highest antibiotic resistance prevalence was observed for streptomycin and tetracycline followed by β-lactams and sulphonamides. Among E. coli isolates, 65.16% were resistant to at least one of the 17 antibiotics tested and approximately 19% were multiresistant. In our E. coli population phylo-groups A and D were predominant and characterized by higher prevalence of the antibiotic resistance. intI1 and intI2 genes were found in 12% of the isolates with prevalence of class 1 integrons. A strong correlation between the prevalence of integrons and multiresistance was observed. Differences in terms of antibiotic resistance between phylogenetic groups and between sampling sites were statistically significant. The results demonstrate a high prevalence of antibiotic resistance among E. coli circulating in the Tagus estuary with emphasis on the occurrence of resistance to last-resort antibiotics and on the high incidence of multiresistance. | 2013 | 23714246 |
| 2930 | 1 | 0.9998 | Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied. | 2012 | 22823142 |
| 1368 | 2 | 0.9998 | Prevalence and characterisation of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. A global increase in the populations of drug resistant bacteria exerts negative effects on animal production and human health. Our study has been focused on the assessment of resistance determinants in relation to phenotypic resistance of the 74 commensal E. coli isolates present in different ecological environments. The samples were collected from poultry litter, feces, and neck skin. Among the microorganisms isolated from the poultry litter (group A), the highest resistance was noted against AMP and DOX (100%). In the E. coli extracts from the cloacal swabs (group B), the highest resistance was observed against AMP (100%) and CIP (92%). The meat samples (group C) were characterized by resistance to AMP (100%) and STX (94.7%). Genes encoding resistance to β-lactams (bla(TEM), bla(CTX-M)), fluoroquinolones (qnrA, qnrB, qnrS), aminoglycosides (strA-strB, aphA1, aac(3)-II), sulfonamides (sul1, sul2, sul3), trimethoprim (dfr1, dfr5, dfr7/17) and tetracyclines (tetA, tetB) were detected in the studied bacterial isolates. The presence of class 1 and 2 integrons was confirmed in 75% of the MDR E. coli isolates (plasmid DNA), of which 60% contained class 1 integrons, 15% contained class 2 integrons, and 11.7% carried integrons of both classes. Thus, it may be concluded that integrons are the common mediators of antimicrobial resistance among commensal multidrug resistant Escherichia coli at important stages of poultry production. | 2022 | 35410349 |
| 2931 | 3 | 0.9998 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 2932 | 4 | 0.9998 | Resistance to Sulfonamides and Dissemination of sul Genes Among Salmonella spp. Isolated from Food in Poland. Antimicrobial resistance of pathogenic bacteria, including Salmonella spp., is an emerging problem of food safety. Antimicrobial use can result in selection of resistant organisms. The food chain is considered a route of transmission of resistant pathogens to humans. In many European countries, sulfonamides are one of the most commonly used antimicrobials. The aim of our investigation was to assess the prevalence of sul genes and plasmid occurrence among sulfonamide-resistant Salmonella spp. Eighty-four sulfonamide-resistant isolates were collected in 2008 and 2013 from retail products in Poland. Minimal inhibitory concentration of all of these isolates was ≥1024 μg/mL. Resistant isolates were tested for the presence of sul1, sul2, sul3, and int1 genes by using multiplex polymerase chain reaction. In total, 44.0% (37/84) isolates carried the sul1 gene, 46.4% (39/84) were sul2 positive, while the sul3 gene was not detected in any of the sulfonamide-resistant isolates tested. It was found that 3.6% (3/84) of resistant Salmonella spp. contained sul1, sul2, and intI genes. All 33 intI-positive isolates carried the sul1 gene. Eleven of the sulfonamide-resistant isolates were negative for all the sul genes. Most of the sulfonamide-resistant Salmonella spp. harbored plasmids; only in eight isolates were no plasmids detected. Generally, the size of the plasmids ranged from approximately 2 kb to ≥90 kb. Our results revealed a relatively a high prevalence of sulfonamides-resistant Salmonella spp. isolated from retail food. Additionally, we have detected a high dissemination of plasmids and class 1 integrons that may enhance the spread of resistance genes in the food chain. | 2015 | 25785781 |
| 5271 | 5 | 0.9998 | Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important. | 2020 | 33126462 |
| 2889 | 6 | 0.9998 | Coliform bacteria isolated from recreational lakes carry class 1 and class 2 integrons and virulence-associated genes. AIMS: To characterize the integron-harbouring Gram-negative bacteria in recreational lakes, with focus on the genetic content of integrons, antimicrobial resistance profiles and virulence-associated genes. METHODS AND RESULTS: The presence and structure of integrons in coliform bacteria isolated from the water of four recreational lakes located in Poznań, Poland, was determined by PCR method. Antimicrobial resistance testing was done by disc diffusion method. Virulence-associated genes in integron-bearing Escherichia coli isolates were detected by PCR. A total of 155 integron-bearing strains of coliform bacteria were cultured. Sequence analysis showed the presence of dfrA7, aadA1, dfrA1-aadA1, dfrA17-aadA5 and dfrA12-orfF-aadA2 gene cassette arrays in class 1 integrons and dfrA1-sat2-aadA1 in class 2 integrons. Higher frequency of integron-positive bacteria and higher antimicrobial resistance ranges were noted in colder months (January and November) compared with spring and summer months. The integron-harbouring E. coli carried up to nine virulence-associated genes, with the highest frequency of kpsMT (84.6%) and traT (783%), coding for group 2 capsule and determining human serum resistance respectively. CONCLUSIONS: Integron-bearing multidrug resistant coliform bacteria carrying virulence genes are present in waters of recreational lakes. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents antimicrobial resistance and virulence-associated genes in integron-bearing coliform bacteria present in the waters of recreational lakes, which showed that multidrug resistant bacteria with virulence traits might pose a threat to public health. Moreover, the presence of genes typical for enterotoxigenic and Shiga toxin-producing E. coli is a concern. | 2015 | 25963437 |
| 2952 | 7 | 0.9998 | Characterization of Integrons and Sulfonamide Resistance Genes among Bacteria from Drinking Water Distribution Systems in Southwestern Nigeria. BACKGROUND: The emergence of antibiotic resistance among pathogenic bacteria in clinical and environmental settings is a global problem. Many antibiotic resistance genes are located on mobile genetic elements such as plasmids and integrons, enabling their transfer among a variety of bacterial species. Water distribution systems may be reservoirs for the spread of antibiotic resistance. MATERIALS AND METHODS: Bacteria isolated from raw, treated, and municipal tap water samples from selected water distribution systems in south-western Nigeria were investigated using the point inoculation method with seeded antibiotics, PCR amplification, and sequencing for the determination of bacterial resistance profiles and class 1/2 integrase genes and gene cassettes, respectively. RESULTS: sul1,sul2, and sul3 were detected in 21.6, 27.8, and 0% of the isolates, respectively (n = 162). Class 1 and class 2 integrons were detected in 21.42 and 3.6% of the isolates, respectively (n = 168). Genes encoding resistance to aminoglycosides (aadA2, aadA1, and aadB), trimethoprim (dfrA15, dfr7, and dfrA1), and sulfonamide (sul1) were detected among bacteria with class 1 integrons, while genes that encodes resistance to strepthothricin (sat2) and trimethoprim (dfrA15) were detected among bacteria with class 2 integrons. CONCLUSIONS: Bacteria from these water samples are a potential reservoir of multidrug-resistant traits including sul genes and mobile resistance elements, i.e. the integrase gene. | 2017 | 27322615 |
| 2624 | 8 | 0.9998 | Dissemination of ESBL-producing Escherichia coli of chicken origin to the nearby river water. The dissemination of drug-resistant bacteria from animal farms to aquatic environments can pose a potential threat to public health. In this study, antimicrobial resistance, resistance genes, and genetic similarity of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli of different origins (chicken feces and upstream and downstream river waters) were analyzed to track the spread of drug-resistant bacteria of animals. The results showed that a total of 29 ESBL-producing E. coli were obtained from 258 samples, and isolation rates of the ESBL-producing E. coli from chicken feces and upstream and downstream waters were 10.7% (16/150), 3.7% (1/27), and 14.8% (12/81), respectively. The ESBL-producing E. coli from upstream water was resistant to 7 antibiotics, but isolates from feces and downstream water had a higher resistance rate. In 29 ESBL-producing E. coli, the most common gene was CTX-M and the SHV gene was not detected. Five ESBL-producing isolates from downstream water showed >90% similarity with the fecal isolates, while the only one isolate from upstream water had <70% similarity with fecal isolates. The results suggest that animal farms' effluent, especially the untreated wastewater, could contribute to the spread of resistance genes. | 2014 | 25277838 |
| 2929 | 9 | 0.9998 | Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture. | 2011 | 21975604 |
| 5272 | 10 | 0.9998 | Prevalence of Antibiotic Resistance Genes in Multidrug-Resistant Enterobacteriaceae on Portuguese Livestock Manure. The exposure of both crop fields and humans to antibiotic-resistant bacteria in animal excreta is an emergent concern of the One Health initiative. This study assessed the contamination of livestock manure from poultry, pig, dairy farms and slaughterhouses in Portugal with resistance determinants. The resistance profiles of 331 Enterobacteriaceae isolates to eight β-lactam (amoxicillin, cefoxitin, cefotaxime, cefpirome, aztreonam, ceftazidime, imipenem and meropenem) and to five non-β-lactam antibiotics (tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and gentamicin) was investigated. Forty-nine integron and non-β-lactam resistance genes were also screened for. Rates of resistance to the 13 antibiotics ranged from 80.8% to 0.6%. Multidrug resistance (MDR) rates were highest in pig farm samples (79%). Thirty different integron and resistance genes were identified. These were mainly associated with resistance to CHL (catI and catII), CIP (mainly, qnrS, qnrB and oqx), TET (mainly tet(A) and tet(M)) and SXT (mostly dfrIa group and sul3). In MDR isolates, integron presence and non-β-lactam resistance to TET, SXT and CHL were positively correlated. Overall, a high prevalence of MDR Enterobacteriaceae was found in livestock manure. The high gene diversity for antibiotic resistance identified in this study highlights the risk of MDR spread within the environment through manure use. | 2019 | 30871244 |
| 2735 | 11 | 0.9998 | Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla (PSE) were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health. | 2023 | 36929890 |
| 2772 | 12 | 0.9998 | Antibiotic Resistance in Pseudomonas spp. Through the Urban Water Cycle. Selection and dissemination of resistant bacteria and antibiotic resistance genes (ARGs) require a deeper understanding since antibiotics are permanently released to the environment. The objective of this paper was to evaluate the phenotypic resistance of 499 isolates of Pseudomonas spp. from urban water sources, and the prevalence of 20 ARGs within those isolates. Resistance to penicillins, cephalosporins, carbapenems, quinolones, macrolides, and tetracyclines was mainly observed in the hospital effluent, municipal wastewater and river water downstream the city. Resistant strains were frequently identified as P. aeruginosa and P. putida. P. aeruginosa isolates were mostly resistant to cefepime, ceftazidime, imipenem, and gentamycin, while P. putida strains were especially resistant to piperacillin-tazobactam. ARGs such as bla(TEM-1), bla(SHV-1), bla(PER-1), bla(AmpC), bla(VIM-1), PstS, qnrA, qnrB, ermB, tetA, tetB and tetC have been detected. The bla(AmpC) gene was found in P. aeruginosa, while bla(TEM-1) and bla(PER-1) genes were found in P. putida. Class 1 integron integrase gene was found in 6.81% of the Pseudomonas isolates. | 2021 | 33625570 |
| 2924 | 13 | 0.9998 | Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. BACKGROUND: Persistence of antibiotic resistant bacteria, including multidrug resistant (MDR) pseudomonads, is an important environmental health problem associated with drinking water distribution systems (DWDS) worldwide. There is paucity of data on the molecular characteristics of antibiotic resistance genes and their mode of transfer among pseudomonads from DWDS located in resource-challenged areas such as southwestern Nigeria. METHODS: MDR pseudomonads (n = 22) were selected from a panel of 296 different strains that were isolated from treated and untreated water in six DWDS located across southwest Nigeria. Primarily, the isolated pseudomonads strains were identified by 16S rDNA sequencing and antibiotic-resistance testing was completed using agar breakpoints assays. The final panel of strains of resistant to more than three classes of antibiotics (i.e. MDR), were further characterized by PCR genotyping, Sanger sequencing, and plasmid profiling. RESULTS: Pseudomonad resistance to gentamicin and streptomycin ranged from 22.7 to 54.6 % while resistance to tetracycline, ceftiofur and sulphamethoxazole ranged from 40.9 to 77.3 %. The most commonly detected antibiotic resistance genes were tet(A) (31.8 % of isolates), sul1 (31.8 %), bla TEM (40.9 %) and aph(3″) (c) (36.4 %). Class 1 integron sequences were evident in 27.3 % of isolates and they harbored genes encoding resistance to aminoglycosides (aadA2, aadA1), trimethoprim (dfrA15, dfr7) and sulphonamide (sul1) while the plasmid ranged between 22 and 130 kb. CONCLUSIONS: Pseudomonas spp, isolated from these DWDS possess resistance genes and factors that are of public and environmental health significance. Therefore, has the potential of contributing to the global scourge of resistance genes transfer in human, animals and environments, thereby, useful in the epidemiology of antimicrobial resistance. | 2015 | 26328550 |
| 2895 | 14 | 0.9998 | Diversity of antimicrobial resistance genes and class-1-integrons in phylogenetically related porcine and human Escherichia coli. Antimicrobial resistant bacteria and resistance genes can be transferred between the microbial flora of humans and animals. To assess the dimension of this risk, we compared the phylogenetic ancestry of human and porcine tetracycline-insusceptible Escherichia coli. Further, we compared the resistance gene profiles (tetA/tetB/tetC/tetD/tetM/sulI/sulII/sulIII/strA-strB/addA) and the prevalence of class-1-integrons in isolates of identical and different phylogroups by endpoint-PCR. This is the first genotypic comparison of antimicrobial resistance in E. coli from humans and animals which allows for the phylogenetic ancestry of the isolates. E. coli isolates from diseased humans belonged regularly to phylogroup B2 (24.3%) or D (30.9%) and were rarely not typeable (7.2%); by contrast, isolates from pig manure were regularly not typeable (46.7%) and rarely grouped into phylogroup B2 (2.2%) or D (2.9%). Class-1-integrons were detected in 40.8% of clinical (n=152), in 9.5% of community-derived (n=21) and in 10.9% of porcine (n=137) E. coli. The prevalence of sulI (42.4%/16.0%) in phylogroup A and of tetA, tetB and sulII in phylogroup B1 differed significantly between human clinical and porcine strains. Human clinical isolates (except B2-isolates) carried significantly more different resistance genes per strain, compared to porcine or community-derived isolates. ERIC-PCR-analysis of B2- (and D-) isolates with identical genetic profiles revealed that only a minor part was clonally related. The dominant resistance gene profiles differed depending on phylogroup and source. Human and porcine isolates do not exceedingly share their genes, and might rapidly adapt their resistance gene equipment to meet the requirements of a new environment. The study underlines that resistance gene transfer between human and porcine isolates is limited, even in phylogenetically related isolates. | 2012 | 22854332 |
| 2738 | 15 | 0.9998 | Diversity of bacteria carrying antibiotic resistance genes in hospital raw sewage in Southeastern Brazil. In recent decades, antibiotic-resistant bacteria (ARB) emerged and spread among humans and animals worldwide. In this study, we evaluated the presence of ARB and antibiotic resistance genes (ARGs) in the raw sewage of two hospitals in Brazil. Sewage aliquots were inoculated in a selective medium with antibiotics. Bacterial identification was performed by MALDI-TOF and ARGs were assessed by polymerase chain reaction (PCR). A total of 208 strains from both hospitals were isolated (H1 = 117; H2 = 91). A wide variety of Enterobacterales and non-Enterobacterales species were isolated and most of them were Enterobacter spp. (13.0%), Proteus mirabilis (10.1%), and Klebsiella pneumoniae (9.6%). blaTEM and blaKPC were the most frequent β-lactamase-encoding genes and the predominant macrolide resistance genes were mph(A) and mel. Many species had the three tetracycline resistance genes (tetD, tetM, tetA) and strB was the prevalent aminoglycoside resistance gene. Two Staphylococcus haemolyticus strains had the mecA gene. Quinolone, colistin, and vancomycin resistance genes were not found. This study showed that hospital raw sewage is a great ARB and ARG disseminator. Strict monitoring of hospital sewage treatment is needed to avoid the spread of these genes among bacteria in the environment. | 2023 | 36640035 |
| 1363 | 16 | 0.9998 | Comparison of antimicrobial resistance and molecular characterization of Escherichia coli isolates from layer breeder farms in Korea. In Korea, 4 big layer companies that possess one grandparent and 3 parent stocks are in charge of 100% of the layer chicken industry. In this study, we investigated the antimicrobial resistance of commensal 578 E. coli isolated from 20 flocks of 4-layer breeder farms (A, B, C, and D), moreover, compared the characteristics of their resistance and virulence genes. Isolates from farms B and D showed significantly higher resistance to the β-lactam antimicrobials (amoxicillin, ampicillin, and 1st-, 2nd-, and 3rd-generation cephalosporins). However, resistance to ciprofloxacin, nalidixic acid, and tetracycline was significantly higher in the isolates from farm A (P < 0.05). Interestingly, the isolates from farm C showed significantly lower resistance to most antimicrobials tested in this study. The isolates from farms B, C, and D showed the high multiple resistance to the 3 antimicrobial classes. Furthermore, the isolates from farm A showed the highest multiple resistance against the 5 classes. Among the 412 β-lactam-resistant isolates, 123 (29.9%) carried bla(TEM-1), but the distribution was significantly different among the farms from 17.5% to 51.4% (P < 0.05). Similarly, the most prevalent tetracycline resistance gene in the isolates from farms B, C, and D was tetA (50.0-77.0%); however, the isolates from farm A showed the highest prevalence in tetB (70.6%). The distribution of quinolone (qnrB, qnrD, and qnrS) and sulfonamide (su12)-resistant genes were also significantly different among the farms but that of chloramphenicol (catA1)- and aminoglycoside (aac [3]-II, and aac [6']-Ib)-resistant genes possessed no significant difference among the farms. Moreover, the isolates from farm C showed significantly higher prevalence in virulence genes (iroN, ompT, hlyF, and iss) than the other 3 farms (P < 0.05). Furthermore, the phenotypic and genotypic characteristics of E. coli isolates were significantly different among the farms, and improved management protocols are required to control of horizontal and vertical transmission of avian disease, including the dissemination of resistant bacteria in breeder flocks. | 2022 | 34844113 |
| 2951 | 17 | 0.9998 | The diversity in antimicrobial resistance of MDR Enterobacteriaceae among Chinese broiler and laying farms and two mcr-1 positive plasmids revealed their resistance-transmission risk. This research aimed to investigate the microbial composition and diversity of antimicrobial resistance genes (ARGs) found in Chinese broiler and layer family poultry farms. We focused on the differences in resistance phenotypes and genotypes of multidrug-resistant Enterobacteriaceae (MDRE) isolated from the two farming environments and the existence and transmissibility of colistin resistance gene mcr-1. Metagenomic analysis showed that Firmicutes and Bacteroides were the dominant bacteria in broiler and layer farms. Many aminoglycoside and tetracycline resistance genes were accumulated in these environments, and their absolute abundance was higher in broiler than in layer farms. A total of 526 MDRE were isolated with a similar distribution in both farms. The results of the K-B test showed that the resistance rate to seven antimicrobials including polymyxin B and meropenem in broiler poultry farms was significantly higher than that in layer poultry farms (P ≤ 0.05). PCR screening results revealed that the detection rates of mcr-1, aph(3')Ia, aadA2, bla (oxa-1) , bla (CTX-M) , fosB, qnrD, sul1, tetA, and catA1 in broiler source MDRE were significantly higher than those in layers (P ≤0.05). A chimeric plasmid p20432-mcr which carried the novel integron In1866 was isolated from broiler source MDRE. The high frequency of conjugation (10(-1) to 10(-3)) and a wide range of hosts made p20432-mcr likely to play an essential role in the high detection rate of mcr-1, aph(3')-Ia, and aadA2 in broiler farms. These findings will help optimize disinfection and improve antimicrobial-resistant bacteria surveillance programs in poultry farms, especially broilers. | 2022 | 35992687 |
| 2966 | 18 | 0.9998 | Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract. | 2024 | 38191447 |
| 2611 | 19 | 0.9998 | Prevalence of antimicrobial-resistant bacteria in conventional vs. organic livestock farms in Egypt: a cross-sectional comparative study. The silent pandemic of antimicrobial resistance (AR) has been on the rise for the past decades. It is essential to determine the burden of AR in animal farms that spreads leading to human exposure. A total of 100 samples including soil, litter, animal excreta, and wastewater were collected from seven conventional and one organic farm in Egypt. The prevalence of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-producing E. coli), fluoroquinolone-resistant E. coli, fluoroquinolone-resistant Salmonella, and vancomycin-resistant enterococci (VRE) was determined in studied farms. Conventional farms had a higher prevalence of antimicrobial-resistant bacteria than the organic farm (73.81% vs. 18.75%, P < .001). In conventional farms 21.43% of samples yielded mixed isolates; however, in the organic farm, only single isolates of ESBL-producing E. coli were detected. The most prevalent ESBL-production gene was blaTEM (82.14%), followed by blaCTX-M (48.22%), and blaSHV (19.64%), either alone or in combination with another gene. The most prevalent fluoroquinolone-resistance genes were qnrS (82.69%) and qnrB (42.30%), either alone or in combination with another gene(s). A total of five VRE isolates harbored vanA gene (83.33%), none carried vanB gene, and one isolate was negative for both genes. The studied conventional livestock farms had significantly higher rates of serious AR threats than the organic farm. | 2023 | 36688777 |