AMR Threat Perception Assessment of Heterotrophic Bacteria From Shrimp Aquaculture Through Epidemiological Cut off Values. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
288801.0000AMR Threat Perception Assessment of Heterotrophic Bacteria From Shrimp Aquaculture Through Epidemiological Cut off Values. BACKGROUND: Emergence and dissemination of antibiotic resistance is one of the major risks associated with the rampant usage of antibiotics in food-producing animals including aquaculture. OBJECTIVE: To determine Epidemiological Cut-OFF (ECOFF) values of heterotrophic bacterial populations from shrimp culture environments against five different antibiotics. METHODS: In this present study, bacterial samples were isolated from Penaeus vannamei culture environment in different locations of Andhra Pradesh, which is the aquaculture hub of India. The bacterial isolates were assessed for antibiotic resistance towards five antibiotics belonging to different classes (oxytetracycline, chloramphenicol, erythromycin, ciprofloxacin, and co-trimoxazole) by the disc diffusion method. Determination of Epidemiological Cut-OFF (ECOFF) values and analysis by employing normalized resistance interpretation (NRI) was carried out. RESULTS: The most dominant bacterial populations from shrimp culture were Vibrio spp. (pathogenic bacteria) followed by Bacillus spp. (probiotic bacteria). The bacterial isolates showed highest resistance towards oxytetracycline (overall 23.38%) and in location L6 (59.4%) followed by co-trimoxazole (31.1%). ECOFF values calculated by employing NRI showed that the disc diffusion data were distributed in a normalized manner. The maximum ECOFF value was obtained for ciprofloxacin (23.32 mm), while the minimum value was observed for oxytetracycline (9.05 mm). The antibiotic resistant phenotypes showed that the majority of the heterotrophic bacterial isolates (>60%) belonged to the non-wild type phenotype and primarily towards oxytetracycline (90%). CONCLUSION: The presence of non-wild antibiotic-resistant phenotypes of heterotrophic bacterial populations (which include not only pathogenic bacteria but also probiotic bacteria) indicates that shrimp culture ponds may be a reservoir for drug-resistant bacteria and there is a greater risk associated with transmission of resistant genes across bacterial flora. HIGHLIGHTS: NRI analysis of antibiotic disc diffusion data of heterotrophic bacterial populations in shrimp aquaculture environments revealed that majority of them belonged to non-wild type (90%) paticularly to oxytetracycline in comparison to other studied antibiotics (chloramphenicol, erythromycin, ciprofloxacin and co-trimoxazole).202438366611
284910.9998Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation.202133558614
554120.9998Molecular characterization and antimicrobial resistance profile of fecal contaminants and spoilage bacteria that emerge in rainbow trout (Oncorhynchus mykiss) farms. Fecal contaminants are a major public concern that directly affect human health in the fish production industry. In this study, we aimed to determine the fecal coliform, spoilage bacteria, and antimicrobial-resistant bacterial contamination in rainbow trout (Oncorhynchus mykiss) farms. Fish were sampled from rainbow trout farms that have a high production capacity and are established on spring water, stream water, and dammed lakes in six different regions of Turkey. A total of seven Enterobacter subspecies, two strains of Pseudomonas spp., and one isolate each of Morganella and Stenotrophomonas were characterized based on biochemical and molecular methods, including the 16S rRNA and gyrB housekeeping gene regions. The sequencing results obtained from the 16S rRNA and gyrB gene regions were deposited in the GenBank database and compared with isolates from different countries, which were registered in the database. Resistance to 10 different antimicrobial compounds was determined using the broth microdilution method, and molecular resistance genes against florfenicol, tetracycline, and sulfamethoxazole were identified by PCR. All detected resistance genes were confirmed by sequencing analyses. E. cloacae, E. asburiae, Pseudomonas spp., S. maltophilia, and M. psychrotolerans were identified using the gyrB housekeeping gene, while isolates showed different biochemical characteristics. All isolates were found to be phenotypically resistant to sulfamethoxazole, and some isolates were resistant to tetracycline, florfenicol, amoxicillin, and doxycycline; the resistance genes of these isolates included floR, tetC, tetD, and tetE. We showed that fecal coliforms, spoilage bacteria, and antimicrobial resistant bacteria were present in farmed rainbow trout, and they pose a threat for human health and must be controlled in the farming stage of fish production.201931106106
554330.9998Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments.200616630011
288740.9998Diversity and characterization of oxytetracycline-resistant bacteria associated with non-native species, white-leg shrimp (Litopenaeus vannamei), and native species, black tiger shrimp (Penaeus monodon), intensively cultured in Thailand. AIMS: This study aimed at surveying prevalence of oxytetracycline (OTC)-resistant bacteria in the white-leg shrimp Litopenaeus vannamei, and the black tiger shrimp Penaeus monodon, intensively cultured in Thailand. We investigated the phylogenetic diversity of the bacterial isolates, as well as the minimum inhibitory concentration (MIC) of OTC, the occurrence of major OTC-resistant genes and multiple-antibiotic resistance in the isolates. METHODS AND RESULTS: Shrimps were collected from culture ponds, and the homogenates of whole bodies were plated on tryptic soy agar supplemented with or without OTC. Percentages of OTC-resistant bacteria were 0·3-52·1% in white-leg samples and 0·008-22·3% in black tiger samples. Analyses of 16S rDNA sequences indicated that most OTC-resistant isolates were closely related to Aeromonas spp. and Lactococcus garvieae. MICs of OTC were 4-128 μg ml(-1) in the OTC-resistant aeromonads and 128-256 μg ml(-1) in OTC-resistant L. garvieae. OTC resistance was found to be conferred by the genes tet(A), tet(C), tet(D), tet(E), tet(M) and tet(S), detected either singly or in pairs. No resistance to ceftazidime, imipenem or chloramphenicol was observed in any isolate. CONCLUSIONS: Both species of shrimp are associated with OTC-resistant bacteria, occasionally at high densities exceeding 10(6) cfu g(-1). The associated bacteria, predominantly Lactococcus and Aeromonas genera, are potential pathogens and are reservoirs of a variety of OTC-resistant genes. SIGNIFICANCE AND IMPACT OF THE STUDY: Cultured shrimps can be vehicle to carry OTC-resistant bacteria to domestic and foreign consumers via the food chain. Very low populations of OTC-resistant bacteria observed in the several ponds suggest that levels of the resistant bacteria are artificially high and should be reduced in farmed shrimps.201121219554
286550.9998Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
271760.9997Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECV(CLSI) and ECV(NRI), respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6')-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA-tetD and tetA-tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.202235326806
286170.9997Antibiotic Resistance Profiles and Genomic Analysis of Endophytic Bacteria Isolates from Wild Edible Fungi in Yunnan. The use of antibiotics has led to the emergence of antibiotic resistance, posing significant challenges in the prevention, control, and treatment of microbial diseases, while threatening public health, the environment, and food safety. In this study, the antibiotic resistance phenotypes and genotypes of 56 endophytic bacteria isolates from three species of wild edible fungi in Yunnan were analyzed using the Kirby-Bauer disk diffusion method and PCR amplification. The results revealed that all isolates were sensitive to ofloxacin, but resistance was observed against 17 other antibiotics. Specifically, 55, 53, and 51 isolates exhibited resistance to amoxicillin, penicillin, and vancomycin, respectively. Antibiotic resistance gene (ARG) detection indicated that the sulfonamide sul1 gene had the highest detection rate (53.57%). Excluding the ARG that was not detected, the lowest detection rates were the sulfonamide sul2 and sul3 genes, both at 1.79%. Among six tetracycline resistance genes, only tetK and tetM were detected. For β-lactam antibiotics, blaTEM, blaVIM, and blaSHV genes were present, while blaOXA was absent. In aminoglycoside resistance genes, aadB was not detected, while detection rates for aac(3')-IIa, acrB, and aadA1 were 3.57%, 1.79%, and 37.5%, respectively. The chloramphenicol Cat gene was detected at a rate of 14.29%, whereas floR was absent. For polypeptide resistance, VanC was detected at 3.57%, with EmgrB not detected. All three quinolone genes were detected, with detection rates of 8.92% for GyrA, 39.29% for GyrB, and 37.5% for ParC. Through phylogenetic analysis, 12 isolates that are closely related to ten common foodborne pathogenic bacteria were further selected for whole-genome sequencing and assembly. Gene annotations revealed that each isolate contained more than 15 ARGs and over 30 virulence factors. Notably, the detection rate of antibiotic resistance phenotypes was higher than that of genotypes, highlighting the importance of studying phenotypic antibiotic resistance that lacks identifiable ARGs. This study enriches the research on endophytes in wild edible fungi and provides new data for microbial ecology and antibiotic resistance research. It also offers critical insights for monitoring microbial antibiotic resistance in wild edible fungi and potentially other food sources, contributing to more effective strategies for ecological protection, sustainable agricultural development, and public health security.202540005728
527080.9997Environmental antibiotic stress and high-risk resistance genes in bacterial communities of the Gomti and Ganga Rivers, India. BACKGROUND: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes. METHODS: Water samples were collected seasonally from different sites of Gomti and Ganga River. Bacteria were isolated by plating on nutrient agar supplemented with individual antibiotics (100 µg/ml) to select the resistant strains. These isolates were subsequently tested for cross-resistance to other antibiotics using the disc diffusion method. PCR was performed to detect selected ARGs. RESULTS: The enumeration of microbial population of Gomti River, the tetracycline-resistant bacteria comprised 38% of the bacterial population during spring and chloramphenicol resistance during autumn was a mere 11.9%. Nevertheless, erythromycin resistance was widespread amongst Ganga river bacteria during winter by 28%, while ciprofloxacin resistance was seen in autumn with only 15.8%. Bacterial population led to decline due to antibiotic-induced stress. The tetracycline-resistant bacteria were completely resistant to ampicillin and 66.6% were resistant to erythromycin. In Ganga river water, 53.5% of ampicillin-resistant isolates were resistant to erythromycin and sulphadiazine 93.3% were resistant to nalidixic acid. In the Gomti River water, the most common resistance gene among tetracycline resistant isolates was tetM (83.3%), followed by ampC (83.3%) in ampicillin-resistant isolates. In the Ganga River, 66.6% of bacterial isolates were found to have ampC and ermB genes. The sul1 gene was absent in all the bacterial isolates in both water samples. CONCLUSION: These findings indicate that both rivers act as reservoirs for multidrug-resistant bacteria harbouring complex resistance gene profiles.202540928717
268690.9997Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers.201728679083
2884100.9997Gilthead seabream (Sparus aurata) carrying antibiotic resistant enterococci. A potential bioindicator of marine contamination? Antibiotic resistance in bacteria is a growing problem that is not only restricted to the clinical setting but also to other environments such as marine species that harbor antibiotic resistant bacteria and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to evaluate antibiotic resistance phenotypes in enterococci isolated from fecal samples of gilthead seabream and the associated mechanisms of resistance. A collection of 118 samples were analyzed and 73 enterococci were recovered. The strains showed high percentages of resistance to erythromycin and tetracycline (58.9% and 17.8%, respectively). Lower level of resistance (<13%) was detected for quinupristin-dalfopristin, ampicillin, high-level-gentamicin, high-level-streptomycin, high-level-kanamycin, ciprofloxacin and chloramphenicol. The erm(B), tet(L) or tet(M), aac(6')-aph(2″) and aph(3')-IIIa genes were shown in isolates resistant to erythromycin, tetracycline, high-level gentamicin and high-level kanamycin, respectively. Antibiotic resistance in natural microbiota is becoming a concern of human and environmental health.201121511306
5536110.9997Phenotypic and genetic characterization of multidrug-resistant Staphylococcus aureus in the tropics of Southeast Asia. Antibiotic resistance has become a major public health problem throughout the world. The presence of antibiotic-resistant bacteria such as Staphylococcus aureus and antibiotic resistance genes (ARGs) in hospital wastewater is a cause for great concern today. In this study, 276 Staph. aureus isolates were recovered from hospital wastewater samples in Malaysia. All of the isolates were screened for susceptibility to nine different classes of antibiotics: ampicillin, ciprofloxacin, gentamicin, kanamycin, erythromycin, vancomycin, trimethoprim and sulfamethoxazole, chloramphenicol, tetracycline and nalidixic acid. Screening tests showed that 100 % of Staph.aureus isolates exhibited resistance against kanamycin, vancomycin, trimethoprim and sulfamethoxazole and nalidixic acid. Additionally, 91, 87, 50, 43, 11 and 8.7 % of isolates showed resistance against erythromycin, gentamicin, ciprofloxacin, ampicillin, chloramphenicol and tetracycline, respectively. Based on these results, 100 % of isolates demonstrated multidrug-resistant (MDR) characteristics, displaying resistance against more than three classes of antibiotics. Of 276 isolates, nine exhibited resistance to more than nine classes of tested antibiotics; these were selected for antibiotic susceptibility testing and examined for the presence of conserved ARGs. Interestingly, a high percentage of the selected MDR Staph.aureus isolates did not contain conserved ARGs. These results indicate that non-conserved MDR gene elements may have already spread into the environment in the tropics of Southeast Asia, and unique resistance mechanisms against several antibiotics may have evolved due to stable, moderate temperatures that support growth of bacteria throughout the year.201627902427
2854120.9997Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.201525993887
2931130.9997Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry.201726969806
5598140.9997Antibiotic Resistance in Lactic Acid Bacteria from Dairy Products in Northern Italy. Background: The spread of antibiotic resistance genes (ARGs) from the food chain is a significant public health concern. Dairy products from raw milk containing lactic acid bacteria (LAB) resistant to antimicrobials may serve as vectors for the transfer of resistance to commensal or potentially pathogenic bacteria in the human gut. Detecting ARGs in dairy products and milk is, therefore, crucial and could aid in the development of strategies to mitigate resistance dissemination through the food chain. Objectives: This study aimed to determine the presence of ARGs and assess the antibiotic susceptibility of LAB strains isolated from dairy products made from raw milk. Methods: Fifty-four LAB strains were isolated from 41 dairy samples and were tested for antimicrobial susceptibility using broth microdilution to determine Minimal Inhibitory Concentration (MIC). Moreover, the presence of resistance genes related to tetracyclines, beta-lactams, quinolones, and erythromycin was examined using six multiplex PCR assays. Results: Lactobacillus spp. and Leuconostoc spp. strains exhibited a high level of resistance to vancomycin (93-100%). Low-level resistance (4.2-20%) was observed in Lactococcus spp. and Lactobacillus spp. strains against tetracycline. Additionally, Lactococcus spp. strains showed resistance to trimethoprim/sulfamethoxazole, erythromycin, and clindamycin. Twenty-two out of 54 LAB strains (40.7%) carried at least one antibiotic resistance gene, and five of these were multidrug-resistant. Genes associated with acquired resistance to tetracycline were commonly detected, with tetK being the most frequent determinant. Conclusions: This study demonstrated that LABs in dairy products can act as reservoirs for ARGs, potentially contributing to the horizontal transfer of resistance within microbial communities in food and consumers. These findings highlight the need for the ongoing surveillance of antibiotic resistance in LAB and the implementation of control measures to minimize the dissemination of resistance through dairy products.202540298519
2860150.9997Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10(-9) to 1.8 × 10(-3) with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.202235066837
2817160.9997Characterization of antibiotic resistant enterococci isolated from untreated waters for human consumption in Portugal. Untreated drinking water is frequently overlooked as a source of antibiotic resistance in developed countries. To gain further insight on this topic, we isolated the indicator bacteria Enterococcus spp. from water samples collected in wells, fountains and natural springs supplying different communities across Portugal, and characterized their antibiotic resistance profile with both phenotypic and genetic approaches. We found various rates of resistance to seven antibiotic families. Over 50% of the isolates were resistant to at least ciprofloxacin, tetracyclines or quinupristin-dalfopristin and 57% were multidrug resistant to ≥3 antibiotics from different families. Multiple enterococcal species (E. faecalis, E. faecium, E. hirae, E. casseliflavus and other Enterococcus spp) from different water samples harbored genes encoding resistance to tetracyclines, erythromycin or gentamicin [tet(M)-46%, tet(L)-14%, tet(S)-5%, erm(B)-22%, aac(6´)-Ie-aph(2″)-12%] and putative virulence factors [gel-28%, asa1-16%]. The present study positions untreated drinking water within the spectrum of ecological niches that may be reservoirs of or vehicles for antibiotic resistant enterococci/genes. These findings are worthy of attention as spread of antibiotic resistant enterococci to humans and animals through water ingestion cannot be dismissed.201121145609
2805170.9997Multidrug-resistance and toxic metal tolerance of medically important bacteria isolated from an aquaculture system. The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL(-1)), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2-1,024 μg mL(-1)). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system.201222972388
5547180.9997Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas) and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.201729147114
2879190.9997Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. The prevalence and degree of antibiotic resistance in catfish and eel farms in the southern part of The Netherlands was examined using motile aeromonads as indicator bacteria. A total of 29 water samples were collected, originating from six catfish farms, one catfish hatchery and three eel farms, and were plated on an Aeromonas-selective agar with and without antibiotics. From each plate, one colony was screened for presumptive motile aeromonads and tested for antibiotic susceptibility. The prevalence of resistance was as follows: ampicillin and oxytetracycline 100%; sulfamethoxazole 24%; trimethoprim 3%; and ciprofloxacin and chloramphenicol 0%. The majority of samples showed a high degree of oxytetracycline resistance, implicating fish farms as a major reservoir of oxytetracycline resistance genes. This reservoir might form a risk for human health and has major consequences for the effectiveness of this antibiotic in the treatment of infectious diseases in fish.200818160266