# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2880 | 0 | 1.0000 | Antibiotic resistance monitoring in heterotrophic bacteria from anthropogenic-polluted seawater and the intestines of oyster Crassostrea hongkongensis. A total of 1,050 strains of heterotrophic bacteria isolated from farming seawater and the intestines of oyster species Crassostrea hongkongensis were tested for resistance to 10 antibiotics by the Kirby-Bauer diffusion method. The resistant rates of seawater-derived bacteria to chloramphenicol, enrofloxacin, and ciprofloxacin were low (less than 20%), whereas the bacteria obtained from oysters showed low resistance to chloramphenicol and enrofloxacin. Many strains showed high resistant rates (more than 40%) to furazolidone, penicillin G, and rifampin. A total of 285 strains from farming seawater and oysters were resistant to more than three antibiotics. Several strains showed resistance to more than nine antibiotics. Furthermore, the peak resistant rates of the seawater-derived strains to multiple antibiotics overlapped in April, June, September, and November, and those of oyster-derived strains overlapped during April, July, and September. The multi-resistant rate patterns of strains from farming seawater and oyster intestines were similar. | 2014 | 25133348 |
| 2879 | 1 | 0.9998 | Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. The prevalence and degree of antibiotic resistance in catfish and eel farms in the southern part of The Netherlands was examined using motile aeromonads as indicator bacteria. A total of 29 water samples were collected, originating from six catfish farms, one catfish hatchery and three eel farms, and were plated on an Aeromonas-selective agar with and without antibiotics. From each plate, one colony was screened for presumptive motile aeromonads and tested for antibiotic susceptibility. The prevalence of resistance was as follows: ampicillin and oxytetracycline 100%; sulfamethoxazole 24%; trimethoprim 3%; and ciprofloxacin and chloramphenicol 0%. The majority of samples showed a high degree of oxytetracycline resistance, implicating fish farms as a major reservoir of oxytetracycline resistance genes. This reservoir might form a risk for human health and has major consequences for the effectiveness of this antibiotic in the treatment of infectious diseases in fish. | 2008 | 18160266 |
| 2854 | 2 | 0.9998 | Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2015 | 25993887 |
| 2851 | 3 | 0.9998 | Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China. This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. | 2010 | 20356660 |
| 5270 | 4 | 0.9998 | Environmental antibiotic stress and high-risk resistance genes in bacterial communities of the Gomti and Ganga Rivers, India. BACKGROUND: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes. METHODS: Water samples were collected seasonally from different sites of Gomti and Ganga River. Bacteria were isolated by plating on nutrient agar supplemented with individual antibiotics (100 µg/ml) to select the resistant strains. These isolates were subsequently tested for cross-resistance to other antibiotics using the disc diffusion method. PCR was performed to detect selected ARGs. RESULTS: The enumeration of microbial population of Gomti River, the tetracycline-resistant bacteria comprised 38% of the bacterial population during spring and chloramphenicol resistance during autumn was a mere 11.9%. Nevertheless, erythromycin resistance was widespread amongst Ganga river bacteria during winter by 28%, while ciprofloxacin resistance was seen in autumn with only 15.8%. Bacterial population led to decline due to antibiotic-induced stress. The tetracycline-resistant bacteria were completely resistant to ampicillin and 66.6% were resistant to erythromycin. In Ganga river water, 53.5% of ampicillin-resistant isolates were resistant to erythromycin and sulphadiazine 93.3% were resistant to nalidixic acid. In the Gomti River water, the most common resistance gene among tetracycline resistant isolates was tetM (83.3%), followed by ampC (83.3%) in ampicillin-resistant isolates. In the Ganga River, 66.6% of bacterial isolates were found to have ampC and ermB genes. The sul1 gene was absent in all the bacterial isolates in both water samples. CONCLUSION: These findings indicate that both rivers act as reservoirs for multidrug-resistant bacteria harbouring complex resistance gene profiles. | 2025 | 40928717 |
| 2921 | 5 | 0.9998 | Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants. | 2007 | 17953612 |
| 5919 | 6 | 0.9998 | Self-transmissible antibiotic resistance to ampicillin, streptomycin, and tetracyclin found in Escherichia coli isolates from contaminated drinking water. Presence and survival of cultivable bacteria in drinking water can act as a vehicle to disseminate virulence genes (adherence, enterotoxigenic and antibiotic resistance) to other bacteria. This can result in high morbidity and mortality, and the failure of the treatment of life threatening bacterial infections in humans and animals. In this study, antibiotic resistance (ABR) patterns and transferability of the ABR markers was investigated in Escherichia coli isolates obtained from drinking water and human urine samples. The ABR in E. coli isolates was determined against 15 antibiotics commonly used in human and veterinary medicine. A high frequency of ABR to carbenicillin (56%), tetracycline (53%) and streptomycin (49%) and a low frequency of cefizoxime (5%), amikacin (8%), cefazidine, (5%), chloramphenicol (9%), and kanamycin (18%) was found in the tested E. coli isolates. ABR to kanamycin (0% vs. 35%) and moxalactam (4% vs. 30%) was higher in drinking water isolates whereas resistance to streptomycin (92% vs. 15%), ampicillin (24% vs. 10%), and nalidixic acid (12% vs. 0%) was higher in human urine isolates. A large number of E. coli isolates (93%) exhibited resistance to two or more antibiotics. Two of E. coli isolates from drinking water showed resistances to six (Cb Cm Cx Ip Mx Tc and An Cb Km Mx Sm Tc) and one was resistant to seven antibiotics (Am An Cb Km Mx Sm Tc). A majority of the multiple antibiotic resistant E. coli isolates contained one or more plasmids (size ranged approximately 1.4 Kb to approximately 40 Kb). The ABR traits (Am and Tc) were transferable to other bacteria via conjugation. These data raise an important question about the impact of E. coli containing self-transmissible R-plasmids as a potential reservoir of virulence genes in drinking water. | 2004 | 15055932 |
| 2930 | 7 | 0.9998 | Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. The use of a wide variety of antimicrobials in human and veterinary medicine, including aquaculture, has led to the emergence of antibiotic resistant pathogens. In the present study, bacteria from water, sediments, and fish were collected from fish farms in Pakistan and Tanzania with no recorded history of antibiotic use. The isolates were screened for the presence of resistance genes against various antimicrobials used in aquaculture and animal husbandry. Resistant isolates selected by disk diffusion and genotyped by Southern hybridization were further screened by polymerase chain reaction (PCR) and amplicon sequencing. The prominent resistance genes identified encoded tetracycline [tetA(A) and tetA(G)], trimethoprim [dfrA1, dfrA5, dfrA7, dfrA12, and dfrA15], amoxicillin [bla(TEM)], streptomycin [strA-strB], chloramphenicol [cat-1], and erythromycin resistance [mefA]. The int1 gene was found in more than 30% of the bacterial isolates in association with gene cassettes. MAR indices ranged from 0.2 to 1. The bla(NDM-1) gene was not identified in ertapenem resistant isolates. It is hypothesized that integrated fish farming practices utilizing domestic farm and poultry waste along with antibiotic residues from animal husbandry may have contributed to a pool of resistance genes in the aquaculture systems studied. | 2012 | 22823142 |
| 2931 | 8 | 0.9997 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 2857 | 9 | 0.9997 | Changes in antibiotic resistance of Escherichia coli during the broiler feeding cycle. The purpose of this study was to investigate the drug-resistant phenotypes and genes of Escherichia coli in animal, environmental, and human samples before and after antibiotic use at a large-scale broiler farm to understand the respective effects on E. coli resistance during the broiler feeding cycle. The antibiotic use per broiler house was 143.04 to 183.50 mg/kg, and included tilmicosin, florfenicol, apramycin, and neomycin. All strains isolated on the first day the broilers arrived (T1; day 1) were antibiotic-resistant bacteria. E. coli strains isolated from animal samples were resistant to ampicillin, tetracycline, and sulfamethoxazole (100%), and those isolated from environmental samples were resistant to 5 different drugs (74.07%, 20 of 27). E. coli strains isolated on the last day before the broilers left (T2; day 47) had a higher resistance rate to florfenicol (100%, 36 of 36) than at T1 (P < 0.05). Multidrug resistance increased from T1 (84.21%, 32 of 38) to T2 (97.22%, 35 of 36). Most strains were resistant to 5 classes of antibiotics, and 2 strains were resistant to 6 classes of antibiotics. Among 13 identified drug resistance genes, 11 and 13 were detected at T1 and T2, respectively. NDM-1 was detected in 4 environmental samples and 1 animal sample. In conclusion, the use of antibiotics during breeding increases E. coli resistance to antibacterial drugs. Drug-resistant bacteria in animals and the environment proliferate during the feeding cycle, leading to the widespread distribution of drug resistance genes and an increase in the overall resistance of bacteria. | 2020 | 33248614 |
| 5271 | 10 | 0.9997 | Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important. | 2020 | 33126462 |
| 2686 | 11 | 0.9997 | Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. Foodborne diseases associated with fresh produce consumption have escalated worldwide, causing microbial safety of produce of critical importance. Bacteria that have increasingly been detected in fresh produce are Escherichia coli and Salmonella spp., both of which have been shown to progressively display antimicrobial resistance. The study focused on the assessment of antimicrobial resistance of these enteric bacteria from different kinds of fresh produce from various open air markets and supermarkets in the Philippines. Using the disk diffusion assay on a total of 50 bacterial isolates obtained from 410 fresh produce surveyed, monoresistance to tetracycline was observed to be the most prevalent (38%), followed by multidrug resistance to tetracycline, chloramphenicol, ciprofloxacin, and nalidixic acid (4%), and lastly by dual resistance to tetracycline and chloramphenicol (2%). Using multiplex and simplex polymerase chain reaction (PCR) assays, tetA (75%) and tetB (9%) were found in tetracycline resistant isolates, whereas catI (67%) and catIII (33%) were detected in chloramphenicol resistant isolates. Sequence analysis of gyr and par genes from the ciprofloxacin and nalidixic acid resistant isolates revealed different mutations. Based on the results, fresh produce act as a reservoir of these antibiotic resistant bacteria which may pose health threat to consumers. | 2017 | 28679083 |
| 2870 | 12 | 0.9997 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish. Seawater and shellfish samples collected in the vicinity of a marine sewage outfall were examined for the incidence of antibiotic resistance among coliform and fecal coliform bacteria over a 2-year period. Seventy percent or more of these two groups of bacteria from both sources were resistant to one or more antibiotics. Forty-five percent of the isolates resistant to streptomycin or tetracycline were capable of transferring all or part of their resistance pattern to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779632 |
| 2717 | 13 | 0.9997 | Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECV(CLSI) and ECV(NRI), respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6')-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA-tetD and tetA-tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections. | 2022 | 35326806 |
| 5547 | 14 | 0.9997 | Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas) and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77%) and ampicillin (69.2%). More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%), ceftiofur (53.8%), and erythromycin (53.3%). All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters. | 2017 | 29147114 |
| 2929 | 15 | 0.9997 | Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture. | 2011 | 21975604 |
| 5276 | 16 | 0.9997 | Bacteriological quality, heavy metal and antibiotic resistance in Sapanca Lake, Turkey. Sapanca Lake is important as a source of drinking water. In this study, we aimed to detect the bacterial quality, the frequency of bacterial antibiotic and heavy metal resistance, and bioindicator bacteria in the water samples taken from Sapanca Lake in the period between 2008 and 2010. The resistance of bacterial isolates to certain antibiotics and heavy metal salts was investigated using disc diffusion and minimum inhibitory concentration techniques. Bacterial metabolic reactions were tested using the VITEK 2 Compact 30 micro identification system for identification of cultivable bacteria. Twenty-seven bacteria species belonging to three classes-Gammaproteobacteria, Bacilli, Flavobacteria-were recorded for the first time in Sapanca Lake. The highest indicator bacteria were recorded as 71 ± 3.1 × 10(4) CFU/100 ml in the summer season. The highest bacterial resistance was recorded as 90.47% against vancomycin in a total of 84 strains. Ampicillin (88.10%) and amoxicillin-clavulanate (64.29%) followed them. The resistance varied between 10.71 and 59.52% against cefuroxime, kanamycin, aztreonam, ceftazidime, cefotaxime, and oxacillin. The highest frequency against heavy metal salts was recorded as 74.19% against NiCl(2). The heavy metal resistance against Cu, Zn, Hg, and Cd detected as 52.38%, 46.42%, 33.33%, and 26.19%, respectively. The results showed that the occurrence of heavy metals and antibiotic sources in Sapanca Lake induced a tolerance in bacteria for the metal salts and antibiotic derivatives tested. The fluctuations in the indicator bacteria and the occurrence of pathogenic bacteria also showed the possibility that the coastal areas of Sapanca Lake had been exposed to contamination due to inadequate sewage treatment. | 2019 | 31243556 |
| 2688 | 17 | 0.9997 | Intestinal and Extraintestinal Pathotypes of Escherichia coli Are Prevalent in Food Prepared and Marketed on the Streets from the Central Zone of Mexico and Exhibit a Differential Phenotype of Resistance Against Antibiotics. Background/Objectives: Antibiotic resistance is a serious public health problem threatening the treatment of infectious diseases caused by Escherichia coli, the main source of food contamination and responsible for many infectious diseases with high indices of AR profiles. Our objective was to study the presence of Escherichia coli in foods that are distributed and prepared on the street, characterizing its sensitivity profile and resistance to antibiotic drugs commonly prescribed in this geographical area. Methods: Standard procedures were performed to identify and isolate E. coli colonies from food samples collected during a three-year study. Susceptibility assays were conducted to determine the antibiotic resistance profile, and Colony PCR assays were performed to determine the pathogenic and antibiotic resistance genes. Results: A total of 189 food samples were collected, and 100% of the samples were positive for E. coli, with higher percentages of contamination for vegetables and fruits. ETEC (lt) and UPEC (vat, cnf1, hylA) genes were identified in 100% of the samples and DAEC (afa) in 27%. E. coli exhibited high percentages of resistance against ampicillin and amoxicillin/clavulanic acid (100%) and cephalexin (45%). The most effective antibiotics were tetracycline, TMP-SMX, polymyxin, and quinolones. The AR genes tetA, sul1, catA1, strA, qnrS, and floR were identified among the samples. Conclusions: Food prepared and marketed on the streets seriously threatens human health. Ampicillin and amoxicillin/clavulanic acid should not be used to treat infections caused by the multidrug-resistant ETEC and UPEC identified in this area. To our knowledge, this is the first study that explores the status of AR in this geographical area. | 2025 | 40298585 |
| 5922 | 18 | 0.9997 | Incidence of infectious drug resistance among lactose-fermenting bacteria isolated from raw and treated sewage. Raw and treated sewage samples were examined for antibiotic-resistant, lactose-fermenting bacteria. Approximately 1% of the total lactose-fermenting bacteria were multiply resistant. Of these organisms, 50% were capable of transferring all or part of their resistance to a drug-sensitive recipient. Only 43% of those isolated on media containing a single antibiotic were capable of resistance transfer, whereas 57% of those recovered on multiple antibiotic plates transferred resistance. R factors conferring resistance to chloramphenicol, streptomycin, and tetracycline; streptomycin and tetracycline; and ampicillin, streptomycin, and tetracycline accounted for 22, 19, and 15%, respectively, of those identified. The data indicate a significant level of infectious drug resistance among the intestinal bacteria of the urban population. | 1969 | 5370461 |
| 2968 | 19 | 0.9997 | The phenotypic and genotypic characteristics of antibiotic resistance in Escherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. The aim of the study was to determine the influence of the presence or the absence of antibiotic input on the emergence and maintenance of resistance in commensal bacteria from food producing animals. The research material constituted E. coli isolates from two animal species: swine at different age from one conventional pig farm with antibiotic input in young pigs and from beef and dairy cattle originated from organic breeding farm. The sensitivity to 16 antimicrobial agents was tested, and the presence of 15 resistance genes was examined. In E. coli from swine, the most prevalent resistance was resistance to streptomycin (88.3%), co-trimoxazole (78.8%), tetracycline (57.3%) ampicillin (49.3%) and doxycycline (44.9%) with multiple resistance in the majority. The most commonly observed resistance genes were: bla(TEM) (45.2%), tetA (35.8%), aadA1 (35.0%), sul3 (29.5%), dfrA1 (20.4%). Differences in phenotypes and genotypes of E. coli between young swine undergoing prevention program and the older ones without the antibiotic pressure occurred. A disparate resistance was found in E. coli from cattle: cephalothin (36.9%), cefuroxime (18.9%), doxycycline (8.2%), nitrofurantoin (7.7%), and concerned mainly dairy cows. Among isolates from cattle, multidrug resistance was outnumbered by resistance to one or two antibiotics and the only found gene markers were: bla(SHV), (3.4%), tetA (1.29%), bla(TEM) (0.43%) and tetC (0.43%). The presented outcomes provide evidence that antimicrobial pressure contributes to resistance development, and enteric microflora constitutes an essential reservoir of resistance genes. | 2013 | 24053020 |