High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
287601.0000High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa. This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.201526419380
192710.9998First Molecular Characterization and Antibiogram of Bacteria Isolated From Dairy Farm Wastewater in Bangladesh. This pioneering study in Bangladesh combines phenotypic and genotypic approaches to characterize antibiotic-resistant bacteria in dairy farm wastewater, addressing a critical gap in regional antimicrobial resistance (AMR) research. Dairy farming is integral to global food production, yet the wastewater generated by these operations is a significant source of environmental and public health concerns, particularly in the context of antibiotic resistance. This study aimed to isolate and identify antibiotic-resistant bacteria from dairy farm wastewater and evaluate their antibiogram profiles to inform effective management strategies. A total of 60 wastewater samples were collected and subjected to conventional bacterial characterization, followed by molecular detection via PCR and 16S rRNA gene sequencing. The study identified Pseudomonas aeruginosa (35%), Escherichia coli (30%), Bacillus subtilis (16.67%), and Acinetobacter junii (8.33%) as the predominant bacterial species. Sequencing results demonstrated high compatibility with reference sequences, confirming the identities of the isolates. Antibiogram analysis revealed significant resistance patterns: P. aeruginosa exhibited the highest resistance to penicillin (85.71%) and amoxicillin (76.19%), while demonstrating greater sensitivity to ciprofloxacin and cotrimoxazole. E. coli showed notable resistance to penicillin (88.89%), amoxicillin, and ceftriaxone, while B. subtilis and A. junii also demonstrated high levels of resistance to multiple antibiotics. Notably, a substantial proportion of the isolates exhibited multidrug resistance (MDR), with MAR indices ranging from 0.37 to 0.75. Moreover, several antibiotic resistance genes (ARGs) including penA, bla (TEM) , bla (CTX-M) , tetA, tetB, tetC, and ermB were detected across the bacterial species, with high prevalence rates in P. aeruginosa and A. junii, suggesting the potential for horizontal gene transfer and further spread of resistance. These findings underscore the critical need for a One Health approach to mitigate the risks posed by antibiotic-resistant bacteria in dairy farm wastewater, emphasizing the critical importance of responsible antibiotic use and sustainable farming practices to protect public health and environmental integrity.202540458482
286920.9997Antibiotic resistance and antibiotic-resistance genes of Pseudomonas spp. and Escherichia coli isolated from untreated hospital wastewater. Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of β-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 μg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 10(8) and 4.3 × 10(6) CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the β-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest β-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health.202134280162
195830.9997Isolation, identification, and characterization of resistant bacteria to antibiotics from pharmaceutical effluent and study of their antibiotic resistance. Pharmaceutical effluents primarily enter aquatic environments through the discharge of treated and untreated wastewater from various sources, including hospitals, pharmaceutical manufacturing facilities, and households. Microbes sourced from pharmaceutical effluents such as Pseudomonas spp. pose a significant public health concern because of their high levels of resistance to multiple drugs and extreme multidrug resistance. Therefore, the present study was conducted for the isolation, identification, and molecular characterization of selected isolates from pharmaceutical effluents and also determined their antibiotic sensitivity patterns. From June 2016 to March 2017, a study was conducted on four well-known pharmaceutical companies specializing in antibiotic production in Dhaka and Gazipur. Four wastewater samples were collected from various origins and then brought to the Bacteriology laboratory for microbiological examination. Twelve pure isolates were obtained and characterized through cultural and biochemical tests while molecular identification of Pseudomonas spp. was performed using the 16S rRNA gene sequence. Twelve commercially available antibiotics were used for antibiotic sensitivity tests using Kirby-Bauer disk diffusion methods. We isolated the most predominant isolates, Pseudomonas aeruginosa (41.67%), followed by Bacillus spp. (33.33%) and Staphylococcus spp. (25%) respectively. Among 12 antibiotics, ciprofloxacin is 100% sensitive against P. aeruginosa, while the remaining 11 antibiotics are 100% resistant. Bacillus spp. showed 100% resistance to all antibiotics while 50% sensitive to vancomycin and 100% to chloramphenicol, respectively. Staphylococcus spp. was 100% resistant to all antibiotics. Our research suggested that P. aeruginosa is the reservoir of antibiotic resistance genes and spreads disease to humans from the environment. The findings of this study, i.e., the isolation, identification, and characterization of antibiotic-resistant bacteria from pharmaceutical effluent have highlighted, comprehended, and mitigated the dissemination of antibiotic resistance and opportunistic bacteria.202338230310
193640.9997The prevalence of antibiotic-resistant fecal bacteria in recreational aquatic environments: Phenotypic and molecular approach. The rising incidence of antibiotic resistance poses a significant threat to public health. In recent years the widespread use of antibiotics has led to an increase in the concentration of antibiotic-resistant bacteria also in natural environments. The study was conducted in bathing areas three recreational lakes located in the Zaborski Landscape Park in northern Poland. Water samples were collected in three parallel repetitions in April, June and September 2022. Our study indicates that anthropopressure connected with tourism and recreation promotes the growth of fecal bacteria, including antibiotic-resistant strains, whose significant accumulation was recorded in September, the month marking the end of summer vacation. Antibiotic resistance profiles showed that isolated strains of fecal bacteria were resistant to beta-lactam antibiotics. The highest percentage of Escherichia coli strains showed resistance to cefepime (39.1%), and enterococci to imipenem (26.9%). The amplification of resistance genes confirmed the presence of only selected bla genes in the examined strains of fecal bacteria. The bla(TEM) gene was found in 14 strains of Enterococcus faecium (82.4%), in all 4 isolates of Enterococcus faecalis, and in 4 out of 5 unspecified strains of fecal streptococci. In Escherichia coli only bla(CTX) gene was identified in one strain. The presence of bla(TEM) genes was strongly correlated with the concentration of fecal bacteria, it can therefore be assumed that the presence of resistance genes was caused by direct contamination of the studied lakes with feces containing antibiotic-resistant bacteria, presumably without contamination from other sources. Resistance genes found in the control strains from sewage treatment plants were not identified in the studied isolates. Antibiotic resistance genetic markers found in strains isolated from wastewater may prove helpful in determining the sources of contamination of natural aquatic ecosystems with antibiotic-resistant fecal bacteria and thus ensure efficient management of projects aimed at making these waterbodies available for public use.202539909330
273650.9997Characterization of Bacterial Communities and Their Antibiotic Resistance Profiles in Wastewaters Obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. In Nigeria, pharmaceutical wastewaters are routinely disseminated in river waters; this could be associated with public health risk to humans and animals. In this study, we characterized antibiotic resistant bacteria (ARB) and their antibiotic resistance profile as well as screening for sul1 and sul2 genes in pharmaceutical wastewater effluents. Bacterial composition of the wastewater sources was isolated on non-selective media and characterized by the polymerase chain reaction (PCR) amplification of the 16S rRNA genes, with subsequent grouping using restriction fragment length polymorphism (RFLP) and sequencing. The antibiotics sensitivity profiles were investigated using the standard disk diffusion plate method and the minimum inhibitory concentrations (MICs) of selected antibiotics on the bacterial isolates. A total of 254 bacterial strains were isolated, and majority of the isolates were identified as Acinetobacter sp., Klebsiella pneumonia, Proteus mirabilis, Enterobacter sp. and Bacillus sp. A total of 218 (85.8%) of the bacterial isolates were multidrug resistant. High MICs values were observed for all antibiotics used in the study. The result showed that 31.7%, 21.7% and 43.3% of the bacterial isolates harbored sul1, sul2, and Intl1 genes, respectively. Pharmaceuticals wastewaters are potential reservoirs of ARBs which may harbor resistance genes with possible risk to public health.201829966226
287260.9997Escherichia coli Antibiotic Resistance Patterns from Co-Grazing and Non-Co-Grazing Livestock and Wildlife Species from Two Farms in the Western Cape, South Africa. Although limited, studies have found conflicting results on whether co-grazing results in significant antibiotic resistance transfer between species. This type of farming system can act as a vector in the geographical spread of antibiotic-resistant bacteria in the environment. The aim of this study was to determine the antibiotic-resistant patterns between co-grazing and non-co-grazing livestock and wildlife species in South Africa. Escherichia coli was isolated from the faeces of various wildlife and livestock species from two farms in South Africa and was tested for antibiotic resistance using the Kirby-Bauer disk diffusion method against chloramphenicol, nalidixic acid, ampicillin, streptomycin, sulphafurazole, and tetracycline. A selection of some common antibiotic-resistant genes (blaCMY, aadA1, sul1, sul2, tetA, and tetB) were detected using PCR. The E. coli isolates from wildlife and livestock that co-grazed showed no significant differences in antibiotic resistance patterns. However, this was not the case for tetracycline resistance as the livestock isolates were significantly more resistant than the co-grazing wildlife isolates. The E. coli isolates from the non-co-grazing livestock and wildlife had significant differences in their antibiotic susceptibility patterns; the wildlife E. coli isolates were significantly more resistant to sulphafurazole and streptomycin than the livestock isolates, whilst those isolated from the cattle were significantly more resistant to ampicillin than the wildlife and sheep isolates. The results of this study suggest that there could be an exchange of antibiotic-resistant bacteria and genes between livestock and wildlife that co-graze.202134067232
292970.9997Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.201121975604
194180.9997The association between antimicrobials and the antimicrobial-resistant phenotypes and resistance genes of Escherichia coli isolated from hospital wastewaters and adjacent surface waters in Sri Lanka. The presence of antimicrobials, antimicrobial-resistant bacteria (ARB), and the associated antimicrobial resistance genes (ARGs) in the environment is a global health concern. In this study, the concentrations of 25 antimicrobials, the resistance of Escherichia coli (E. coli) strains in response to the selection pressure imposed by 15 antimicrobials, and enrichment of 20 ARGs in E. coli isolated from hospital wastewaters and surface waters were investigated from 2016 to 2018. In hospital wastewaters, clarithromycin was detected at the highest concentration followed by sulfamethoxazole and sulfapyridine. Approximately 80% of the E. coli isolates were resistant, while 14% of the isolates exhibited intermediate resistance against the tested antimicrobial agents. Approximately 61% of the examined isolates were categorized as multidrug-resistant bacteria. The overall abundance of phenotypes that were resistant toward drugs was in the following order: β-lactams, tetracycline, quinolones, sulfamethoxazole/trimethoprim, aminoglycosides, and chloramphenicol. The data showed that the E. coli isolates frequently harbored bla(TEM), bla(CTX-M), tetA, qnrS, and sul2. These results indicated that personal care products were significantly associated with the presence of several resistant phenotypes and resistance genes, implying their role in co-association with multidrug resistance. Statistical analysis also indicated a disparity specific to the site, treatment, and year in the data describing the prevalence of ARB and ARGs and their release into downstream waters. This study provides novel insights into the abundance of antimicrobial, ARB and ARGs in Sri Lanka, and could further offer invaluable information that can be integrated into global antimicrobial resistance databases.202133894511
286590.9997Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
2735100.9997Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla (PSE) were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.202336929890
5270110.9997Environmental antibiotic stress and high-risk resistance genes in bacterial communities of the Gomti and Ganga Rivers, India. BACKGROUND: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes. METHODS: Water samples were collected seasonally from different sites of Gomti and Ganga River. Bacteria were isolated by plating on nutrient agar supplemented with individual antibiotics (100 µg/ml) to select the resistant strains. These isolates were subsequently tested for cross-resistance to other antibiotics using the disc diffusion method. PCR was performed to detect selected ARGs. RESULTS: The enumeration of microbial population of Gomti River, the tetracycline-resistant bacteria comprised 38% of the bacterial population during spring and chloramphenicol resistance during autumn was a mere 11.9%. Nevertheless, erythromycin resistance was widespread amongst Ganga river bacteria during winter by 28%, while ciprofloxacin resistance was seen in autumn with only 15.8%. Bacterial population led to decline due to antibiotic-induced stress. The tetracycline-resistant bacteria were completely resistant to ampicillin and 66.6% were resistant to erythromycin. In Ganga river water, 53.5% of ampicillin-resistant isolates were resistant to erythromycin and sulphadiazine 93.3% were resistant to nalidixic acid. In the Gomti River water, the most common resistance gene among tetracycline resistant isolates was tetM (83.3%), followed by ampC (83.3%) in ampicillin-resistant isolates. In the Ganga River, 66.6% of bacterial isolates were found to have ampC and ermB genes. The sul1 gene was absent in all the bacterial isolates in both water samples. CONCLUSION: These findings indicate that both rivers act as reservoirs for multidrug-resistant bacteria harbouring complex resistance gene profiles.202540928717
2861120.9997Antibiotic Resistance Profiles and Genomic Analysis of Endophytic Bacteria Isolates from Wild Edible Fungi in Yunnan. The use of antibiotics has led to the emergence of antibiotic resistance, posing significant challenges in the prevention, control, and treatment of microbial diseases, while threatening public health, the environment, and food safety. In this study, the antibiotic resistance phenotypes and genotypes of 56 endophytic bacteria isolates from three species of wild edible fungi in Yunnan were analyzed using the Kirby-Bauer disk diffusion method and PCR amplification. The results revealed that all isolates were sensitive to ofloxacin, but resistance was observed against 17 other antibiotics. Specifically, 55, 53, and 51 isolates exhibited resistance to amoxicillin, penicillin, and vancomycin, respectively. Antibiotic resistance gene (ARG) detection indicated that the sulfonamide sul1 gene had the highest detection rate (53.57%). Excluding the ARG that was not detected, the lowest detection rates were the sulfonamide sul2 and sul3 genes, both at 1.79%. Among six tetracycline resistance genes, only tetK and tetM were detected. For β-lactam antibiotics, blaTEM, blaVIM, and blaSHV genes were present, while blaOXA was absent. In aminoglycoside resistance genes, aadB was not detected, while detection rates for aac(3')-IIa, acrB, and aadA1 were 3.57%, 1.79%, and 37.5%, respectively. The chloramphenicol Cat gene was detected at a rate of 14.29%, whereas floR was absent. For polypeptide resistance, VanC was detected at 3.57%, with EmgrB not detected. All three quinolone genes were detected, with detection rates of 8.92% for GyrA, 39.29% for GyrB, and 37.5% for ParC. Through phylogenetic analysis, 12 isolates that are closely related to ten common foodborne pathogenic bacteria were further selected for whole-genome sequencing and assembly. Gene annotations revealed that each isolate contained more than 15 ARGs and over 30 virulence factors. Notably, the detection rate of antibiotic resistance phenotypes was higher than that of genotypes, highlighting the importance of studying phenotypic antibiotic resistance that lacks identifiable ARGs. This study enriches the research on endophytes in wild edible fungi and provides new data for microbial ecology and antibiotic resistance research. It also offers critical insights for monitoring microbial antibiotic resistance in wild edible fungi and potentially other food sources, contributing to more effective strategies for ecological protection, sustainable agricultural development, and public health security.202540005728
5264130.9997Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment.201931671709
2849140.9997Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. In the United States, farm-raised shrimp accounts for ~ 80% of the market share. Farmed shrimp are cultivated as monoculture and are susceptible to infections. The aquaculture industry is dependent on the application of antibiotics for disease prevention, resulting in the selection of antibiotic-resistant bacteria. We aimed to characterize the prevalence of antibiotic-resistant bacteria and gut microbiome communities in commercially available shrimp. Thirty-one raw and cooked shrimp samples were purchased from supermarkets in Florida and Georgia (U.S.) between March-September 2019. The samples were processed for the isolation of antibiotic-resistant bacteria, and isolates were characterized using an array of molecular and antibiotic susceptibility tests. Aerobic plate counts of the cooked samples (n = 13) varied from < 25 to 6.2 log CFU/g. Isolates obtained (n = 110) were spread across 18 genera, comprised of coliforms and opportunistic pathogens. Interestingly, isolates from cooked shrimp showed higher resistance towards chloramphenicol (18.6%) and tetracycline (20%), while those from raw shrimp exhibited low levels of resistance towards nalidixic acid (10%) and tetracycline (8.2%). Compared to wild-caught shrimp, the imported farm-raised shrimp harbored distinct gut microbiota communities and a higher prevalence of antibiotic-resistance genes in their gut. The presence of antibiotic-resistant strains in cooked shrimps calls for change in processing for their mitigation.202133558614
2853150.9997Antibiotic resistance and virulence genes in coliform water isolates. Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla(TEM), bla(SHV), ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment.201627497615
1943160.9997Occurrence and distribution of antibiotic-resistant bacteria and transfer of resistance genes in Lake Taihu. The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: bla(TEM) > bla(SHV) > bla(CTMX) and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption.201324240317
2568170.9997Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Contamination of surface waters in underdeveloped countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks which may represent a significant dissemination mechanism of antibiotic resistance genes among pathogenic bacterial populations. The present study aims to determine the multi-drug resistance patterns among isolated and identified bacterial strains in a pharmaceutical wastewater effluent in north Tunisia. Fourteen isolates were obtained and seven of them were identified. These isolates belong to different genera namely, Pseudomonas, Acinetobacter, Exiguobacterium, Delftia and Morganella. Susceptibility patterns of these isolates were studied toward commonly used antibiotics in Tunisia. All the identified isolates were found to have 100% susceptibility against colistin sulfate and 100% resistance against amoxicillin. Among the 11 antibiotics tested, six patterns of multi-drug resistance were obtained. The potential of the examined wastewater effluent in spreading multi-drug resistance and the associated public health implications are discussed.201526343496
5271180.9997Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important.202033126462
2854190.9997Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Antibiotic resistance and presence of the resistance genes were investigated in the bacteria isolated from water, sediment, and fish in trout farms. A total of 9 bacterial species, particularly Escherichia coli, were isolated from the water and sediment samples, and 12 species were isolated from fish. The antimicrobial test indicated the highest resistance against sulfamethoxazole and ampicillin in coliform bacteria, and against sulfamethoxazole, imipenem, and aztreonam in known pathogenic bacteria isolated from fish. The most effective antibiotics were rifampicin, chloramphenicol, and tetracycline. The multiple antibiotic resistance index was above the critical limit for almost all of the bacteria isolated. The most common antibiotic resistance gene was ampC, followed by tetA, sul2, blaCTX-M1, and blaTEM in the coliform bacteria. At least one resistance gene was found in 70.8% of the bacteria, and 66.6% of the bacteria had 2 or more resistance genes. Approximately 36.54% of the bacteria that contain plasmids were able to transfer them to other bacteria. The plasmid-mediated transferable resistance genes were ampC, blaCTX-M1, tetA, sul2, and blaTEM. These results indicate that the aquatic environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.201525993887