# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2834 | 0 | 1.0000 | Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments. Antibiotic resistant bacteria with diverse resistance phenotypes and genotypes are ubiquitous in the environments that have become a global health concern. The role of DNA methylation in the dissemination of antibiotic resistance among different environments is currently unclear. We recovered 646 Enterobacteriaceae (Eb) isolates from hospital, livestock manure, municipal wastewater-treatment plants, river sediment and soil for comprehensive analysis of resistance phenotypes, β-lactamase genes, integrons, integron-associated gene cassettes and the levels of DNA methylation. Antibiotic susceptibility testing revealed that approximately 87.31 % isolates were multidrug resistant Eb. The β-lactamase genes were positively detected in 473 isolates with greater diversity in human or animal sourced Eb, while its prevalence was found to be highest in the Eb isolates from the natural environments. Forty-three gene cassettes (28 different types mediated by intI1) were detected in 53 (19.63 %) isolates, with greater diversity in Eb isolates from hospital and livestock manure. The multiple antibiotic resistance index of single strain was positively correlated with the 5-methylcytosine and showed a negative correlation with 6-methylademine. We conclude that the development of antibiotic resistance could possibly be coupled with DNA methylation, which might enhance the antimicrobial resistance and survival capacity of Eb. | 2021 | 33254807 |
| 2837 | 1 | 0.9998 | Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Escherichia coli with reduced susceptibility to quinolones isolated from different environmental sources (urban wastewater treatment plants, n=61; hospital effluent, n=10; urban streams, n=9; gulls, n=18; birds of prey, n=17) and from hospitalised patients (n=28) were compared based on multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The habitats with the most diversified genotypes of quinolone-resistant E. coli, corresponding to the highest genetic diversity (H'), were wastewater and gulls. In addition, genetically distinct populations were observed in clinical samples and birds of prey, suggesting the influence of the habitat or selective pressures on quinolone-resistant E. coli. The close genetic relatedness between isolates of clinical origin and from gulls and wastewater suggests the existence of potential routes of propagation between these sources. The most common sequence types were ST131 and ST10, with ST131 being highly specific to patients, although distributed in all of the other habitats except birds of prey. The prevalence of antimicrobial resistance was significantly higher in isolates from patients and gulls than from other sources (P<0.01), suggesting that the effect of selective pressures met by isolates subjected to strong human impacts. The evidence presented suggests the potential circulation of bacteria between the environmental and clinical compartments, with gulls being a relevant vector of bacteria and resistance genes. | 2015 | 27842875 |
| 1934 | 2 | 0.9998 | Sulfonamide resistance evaluation in five animal species and first report of sul4 in companion animals. Sulfonamides are one of the oldest groups of antibacterial agents with a broad-spectrum, used as first line treatment in bacterial infections. Their widespread use produced a selective pressure on bacteria, as observed by the high incidence of sulfonamides resistance mainly in Gram negative bacteria isolated from animals. In this research, the presence of sulfonamide resistance genes (sul1, sul2, sul3, and sul4) in phenotypically resistant Escherichia coli isolates has been studied. These genes were amplified in isolates recovered from five animal species, with different interactions to humans: cattle, swine, poultry as livestock, and dogs and cats as companion animals. Isolates were collected according to their phenotypic resistance, and the magnetic bead-based Luminex technology was applied to simultaneously detect sul target genes. The frequency of sul genes was highest in swine, among livestock isolates. The sul1 and sul2 were the most frequently sulfonamide resistance genes detected in all phenotypically resistant isolates. Notably, in companion animals, with a closest interaction with human, sul4 gene was detected. To our knowledge, this is the first report of the presence of sul4 gene in E. coli collected from animals, whereas previously the presence of this gene was reported in environmental, municipal wastewater and human clinical isolates. These results highlighted the importance of continuous antimicrobial resistant genes monitoring in animal species, with a special care to companion animals. | 2024 | 39029236 |
| 1941 | 3 | 0.9998 | The association between antimicrobials and the antimicrobial-resistant phenotypes and resistance genes of Escherichia coli isolated from hospital wastewaters and adjacent surface waters in Sri Lanka. The presence of antimicrobials, antimicrobial-resistant bacteria (ARB), and the associated antimicrobial resistance genes (ARGs) in the environment is a global health concern. In this study, the concentrations of 25 antimicrobials, the resistance of Escherichia coli (E. coli) strains in response to the selection pressure imposed by 15 antimicrobials, and enrichment of 20 ARGs in E. coli isolated from hospital wastewaters and surface waters were investigated from 2016 to 2018. In hospital wastewaters, clarithromycin was detected at the highest concentration followed by sulfamethoxazole and sulfapyridine. Approximately 80% of the E. coli isolates were resistant, while 14% of the isolates exhibited intermediate resistance against the tested antimicrobial agents. Approximately 61% of the examined isolates were categorized as multidrug-resistant bacteria. The overall abundance of phenotypes that were resistant toward drugs was in the following order: β-lactams, tetracycline, quinolones, sulfamethoxazole/trimethoprim, aminoglycosides, and chloramphenicol. The data showed that the E. coli isolates frequently harbored bla(TEM), bla(CTX-M), tetA, qnrS, and sul2. These results indicated that personal care products were significantly associated with the presence of several resistant phenotypes and resistance genes, implying their role in co-association with multidrug resistance. Statistical analysis also indicated a disparity specific to the site, treatment, and year in the data describing the prevalence of ARB and ARGs and their release into downstream waters. This study provides novel insights into the abundance of antimicrobial, ARB and ARGs in Sri Lanka, and could further offer invaluable information that can be integrated into global antimicrobial resistance databases. | 2021 | 33894511 |
| 1930 | 4 | 0.9998 | Changes in dominant Escherichia coli and antimicrobial resistance after 24 hr in fecal matter. Intestinal bacteria carry antimicrobial resistance (AMR) genes in mobile genetic elements which have the potential to spread to bacteria in other animal hosts including humans. In fecal matter, Escherichia coli can continue to multiply for 48 hr after being excreted, and in certain environments, E. coli survive long periods of time. It is unclear the extent to which AMR in E. coli changes in the environment outside of its host. In this study, we analyzed changes in the population structure, plasmid content, and AMR patterns of 30 E. coli isolates isolated from 6 chickens (cloacal swabs), and 30 E. coli isolates from fecal samples (from the same 6 chickens) after 24 hr of incubation. Clonality of isolates was screened using the fumC gene sequence and confirmed in a subset of isolates (n = 14) by multi-locus sequence typing. Major shifts in the population structure (i.e., sequence types) and antibiotic resistance patterns were observed among the numerically dominant E. coli isolates after 24 hr. Four E. coli clones isolated from the cloaca swabs and the corresponding fecal samples (after 24 hr incubation) showed different antibiotic resistance patterns. Our study reveals that fecal matter in the environment is an intermediate habitat where rapid and striking changes occur in E. coli populations and antibiotic resistance patterns. | 2019 | 29896865 |
| 1931 | 5 | 0.9998 | The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution. | 2020 | 33087784 |
| 2832 | 6 | 0.9998 | Plasmid-Mediated Ampicillin, Quinolone, and Heavy Metal Co-Resistance among ESBL-Producing Isolates from the Yamuna River, New Delhi, India. Antibiotic resistance is one of the major current global health crises. Because of increasing contamination with antimicrobials, pesticides, and heavy metals, the aquatic environment has become a hotspot for emergence, maintenance, and dissemination of antibiotic and heavy metal resistance genes among bacteria. The aim of the present study was to determine the co-resistance to quinolones, ampicillin, and heavy metals among the bacterial isolates harboring extended-spectrum β-lactamases (ESBLs) genes. Among 73 bacterial strains isolated from a highly polluted stretch of the Yamuna River in Delhi, those carrying blaCTX-M, blaTEM, or blaSHV genes were analyzed to detect the genetic determinants of resistance to quinolones, ampicillin, mercury, and arsenic. The plasmid-mediated quinolone resistance (PMQR) gene qnrS was found in 22 isolates; however, the qnrA, B, C, and qnrD genes could not be detected in any of the bacteria. Two variants of CMY, blaCMY-2 and blaCMY-42, were identified among eight and seven strains, respectively. Furthermore, merB, merP, merT, and arsC genes were detected in 40, 40, 44, and 24 bacterial strains, respectively. Co-transfer of different resistance genes was also investigated in a transconjugation experiment. Successful transconjugants had antibiotic and heavy metal resistance genes with similar tolerance toward antibiotics and heavy metals as did their donors. This study indicates that the aquatic environment is a major reservoir of bacteria harboring resistance genes to antibiotics and heavy metals and emphasizes the need to study the genetic basis of resistant microorganisms and their public health implications. | 2020 | 33227950 |
| 1943 | 7 | 0.9998 | Occurrence and distribution of antibiotic-resistant bacteria and transfer of resistance genes in Lake Taihu. The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: bla(TEM) > bla(SHV) > bla(CTMX) and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption. | 2013 | 24240317 |
| 5313 | 8 | 0.9998 | Treated wastewater: A hotspot for multidrug- and colistin-resistant Klebsiella pneumoniae. Wastewater treatment plants are hotspots for the release of antimicrobial resistant pathogenic bacteria into aquatic ecosystems, significantly contributing to the cycle of antimicrobial resistance. Special attention should be paid to antimicrobial resistant ESKAPE bacteria, which have been identified as high-priority targets for control measures. Among them, Klebsiella pneumoniae is particularly noteworthy. In this study, we collected wastewater samples from the inlet, sedimentation tank, and effluent water of a wastewater treatment plant in June, July, October, and November of 2018. We detected and characterized 42 K. pneumoniae strains using whole genome sequencing (15 from the inlet, 8 from the sedimentation tank, and 19 from the effluent). Additionally, the strains were tested for their antimicrobial resistance phenotype. Using whole genome sequencing no distinct patterns were observed in terms of their genetic profiles. All strains were resistant to tetracycline, meanwhile 60%, 47%, and 37.5% of strains isolated from the inlet, sedimentation tank, and effluent, respectively, were multidrug resistant. Some of the multidrug resistant isolates were also resistant to colistin, and nearly all tested positive for the eptB and arnT genes, which are associated with polymyxin resistance. Various antimicrobial resistance genes were linked to mobile genetic elements, and they did not correlate with detected virulence groups or defense systems. Overall, our results, although not quantitative, highlight that multidrug resistant K. pneumoniae strains, including those resistant to colistin and genetically unrelated, being discharged into aquatic ecosystems from wastewater treatment plants. This suggests the necessity of monitoring aimed at genetically characterizing these pathogenic bacteria. | 2024 | 39053799 |
| 1936 | 9 | 0.9998 | The prevalence of antibiotic-resistant fecal bacteria in recreational aquatic environments: Phenotypic and molecular approach. The rising incidence of antibiotic resistance poses a significant threat to public health. In recent years the widespread use of antibiotics has led to an increase in the concentration of antibiotic-resistant bacteria also in natural environments. The study was conducted in bathing areas three recreational lakes located in the Zaborski Landscape Park in northern Poland. Water samples were collected in three parallel repetitions in April, June and September 2022. Our study indicates that anthropopressure connected with tourism and recreation promotes the growth of fecal bacteria, including antibiotic-resistant strains, whose significant accumulation was recorded in September, the month marking the end of summer vacation. Antibiotic resistance profiles showed that isolated strains of fecal bacteria were resistant to beta-lactam antibiotics. The highest percentage of Escherichia coli strains showed resistance to cefepime (39.1%), and enterococci to imipenem (26.9%). The amplification of resistance genes confirmed the presence of only selected bla genes in the examined strains of fecal bacteria. The bla(TEM) gene was found in 14 strains of Enterococcus faecium (82.4%), in all 4 isolates of Enterococcus faecalis, and in 4 out of 5 unspecified strains of fecal streptococci. In Escherichia coli only bla(CTX) gene was identified in one strain. The presence of bla(TEM) genes was strongly correlated with the concentration of fecal bacteria, it can therefore be assumed that the presence of resistance genes was caused by direct contamination of the studied lakes with feces containing antibiotic-resistant bacteria, presumably without contamination from other sources. Resistance genes found in the control strains from sewage treatment plants were not identified in the studied isolates. Antibiotic resistance genetic markers found in strains isolated from wastewater may prove helpful in determining the sources of contamination of natural aquatic ecosystems with antibiotic-resistant fecal bacteria and thus ensure efficient management of projects aimed at making these waterbodies available for public use. | 2025 | 39909330 |
| 5314 | 10 | 0.9998 | High prevalence of colistin resistance genes in German municipal wastewater. Bacterial resistance against the last-resort antibiotic colistin is of increasing concern on a global scale. Wastewater is suspected to be one of the pathways by which resistant bacteria and the respective genes are disseminated. We employed a metagenomics approach to detect and quantify colistin resistance genes in raw municipal wastewater sampled at 9 locations all over Germany (14 samples in total, collected in 2016/2017). Our data support the findings of earlier studies according to which the prevalence of the colistin resistance gene mcr-1 is still low. However, we were able to demonstrate that the total prevalence of colistin resistance genes is dramatically underestimated if the focus is put on that specific gene alone. In comparison to mcr-1, other gene variants like mcr-3 and mcr-7 proved to be 10 to 100 times more abundant in samples of untreated wastewater. The average relative abundances expressed as copies per 16S rRNA gene copies were 2.3×10(-3) for mcr-3, 2.2×10(-4) for mcr-4, 3.0×10(-4) for mcr-5, and 4.4×10(-4) for mcr-7. While these four gene variants were ubiquitous in all 14 samples, mcr-1 was detected only once at a relative abundance of 1.4×10(-5). Our results suggest a high risk of increasing incidence of colistin resistance as large amounts of mcr genes are continuously disseminated to diverse microbial communities via the wastewater path. | 2019 | 31398645 |
| 3319 | 11 | 0.9998 | Extended-spectrum beta-lactamase (ESBL)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. The spread of Gram-negative bacteria with plasmid-borne extended-spectrum beta-lactamases (ESBLs) has become a worldwide problem. Their prevalence is increasing, both in hospitals and in the environment. The aim of this study was to investigate the presence of ESBL-positive Enterobacteriaceae in municipal sewage and their emission to the ambient air and the river receiving effluent from wastewater treatment plant (WWTP). In the group of 455 isolated strains, up to 19.8% (90 isolates) were phenotypic ESBL-producers. They were detected in the 63 (100%) of sewage samples analyzed, 7 (33.3%) of river water and in 10 (23.8%) of air samples collected at the WWTP area. The plasmid-mediated genes encoding beta-lactams resistance were detected in almost 10% out of bacteria of the WWTP's final effluents and in above 32% out of bacteria of air at the WWTP area. It confirms that those genes are released into the environment, which might facilitate further dissemination among environmental bacteria. Moreover, genes encoding antibiotic resistance were shown to be transferrable to an Escherichia coli recipient strain, which indicates a high possibility of horizontal gene transfer among strains of different genera within the sewage and environmental samples. This study demonstrated that despite the treatment, the municipal sewage may be a reservoir of antibiotic-resistant microorganisms and plasmid-mediated antibiotic resistance genes. This may pose a public health risk, which requires future evaluation and control. | 2013 | 23886578 |
| 3318 | 12 | 0.9998 | Antibiotic resistance genes in bacteriophages from wastewater treatment plant and hospital wastewaters. Antibiotic resistant bacteria (ARB) are a major health risk caused particularly by anthropogenic activities. Acquisition of antibiotic resistances by bacteria is known to have happened before the discovery of antibiotics and can occur through different routes. Bacteriophages are thought to have an important contribution to the dissemination of antibiotic resistance genes (ARGs) in the environment. In this study, seven ARGs (bla(TEM), bla(SHV), bla(CTX-M), bla(CMY), mecA, vanA, and mcr-1) were investigated, in the bacteriophage fraction, in raw urban and hospital wastewaters. The genes were quantified in 58 raw wastewater samples collected at five WWTPs (n = 38) and hospitals (n = 20). All genes were detected in the phage DNA fraction, with the bla genes found in higher frequency. On the other hand, mecA and mcr-1 were the least frequently detected genes. Concentrations varied between 10(2) copies/L and 10(6) copies/L. The gene coding for the resistance to colistin (mcr-1), a last-resort antibiotic for the treatment of multidrug-resistant Gram-negative infections, was identified in raw urban and hospital wastewaters with positivity rates of 19 % and 10 %, respectively. ARGs patterns varied between hospital and raw urban wastewaters, and within hospitals and WWTP. This study suggests that phages are reservoirs of ARGs, and that ARGs (with particularly emphasis on resistance to colistin and vancomycin) in the phage fraction are already widely widespread in the environment with potential large implications for public health. | 2023 | 37315610 |
| 2836 | 13 | 0.9998 | Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. OBJECTIVES: Multidrug-resistant Enterobacteriaceae pose a significant threat to public health. We aimed to study the impact of sewage treatment effluent on antibiotic resistance reservoirs in a river. METHODS: River sediment samples were taken from downstream and upstream of a waste water treatment plant (WWTP) in 2009 and 2011. Third-generation cephalosporin (3GC)-resistant Enterobacteriaceae were enumerated. PCR-based techniques were used to elucidate mechanisms of resistance, with a new two-step PCR-based assay developed to investigate bla(CTX-M-15) mobilization. Conjugation experiments and incompatibility replicon typing were used to investigate plasmid ecology. RESULTS: We report the first examples of bla(CTX-M-15) in UK river sediment; the prevalence of bla(CTX-M-15) was dramatically increased downstream of the WWTP. Ten novel genetic contexts for this gene were identified, carried in pathogens such as Escherichia coli ST131 as well as indigenous aquatic bacteria such as Aeromonas media. The bla(CTX-M-15) -gene was readily transferable to other Gram-negative bacteria. We also report the first finding of an imipenem-resistant E. coli in a UK river. CONCLUSIONS: The high diversity and host range of novel genetic contexts proves that evolution of novel combinations of resistance genes is occurring at high frequency and has to date been significantly underestimated. We have identified a worrying reservoir of highly resistant enteric bacteria in the environment that poses a threat to human and animal health. | 2014 | 24797064 |
| 2853 | 14 | 0.9998 | Antibiotic resistance and virulence genes in coliform water isolates. Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla(TEM), bla(SHV), ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment. | 2016 | 27497615 |
| 2744 | 15 | 0.9998 | Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters. | 2020 | 32763594 |
| 1933 | 16 | 0.9998 | Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination. | 2022 | 36139170 |
| 3391 | 17 | 0.9998 | Phenotypic and genotypic analysis of bacteria isolated from three municipal wastewater treatment plants on tetracycline-amended and ciprofloxacin-amended growth media. AIMS: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. METHODS AND RESULTS: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline- (n=164) and ciprofloxacin-amended (n=65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin-amended growth media (62%) compared to the bacteria isolated on tetracycline-amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline-resistant bacteria and almost half of the ciprofloxacin-resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline-resistant bacteria was capable of lateral gene transfer. CONCLUSIONS: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline-resistant and ciprofloxacin-resistant bacteria in municipal wastewater. SIGNIFICANCE AND IMPACT OF THE STUDY: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance. | 2010 | 20629799 |
| 1935 | 18 | 0.9998 | Antibiotic Susceptibility Profile and Tetracycline Resistance Genes Detection in Salmonella spp. Strains Isolated from Animals and Food. Salmonella spp. is among the leading causes of foodborne infections in humans and a large number of animals. Salmonella spp. is a pathogen involved in the dissemination of antimicrobial resistance because it can accumulate antibiotic resistance genes (ARGs). In this study, the antibiotic resistance profile to 15 antibiotics, belonging to six different classes, of 60 strains of Salmonella spp. collected from pets, farm animals, wildlife, and food in Sicily (Italy) was investigated by the Kirby-Bauer method. Given that almost 33.3% of the Salmonella spp. strains were resistant to tetracycline, Real-Time PCR analysis was applied on all the 60 strains to detect the presence of eight selected tet resistance genes. Besides, the presence of the int1 gene, related to the horizontal gene transfer among bacteria, was also investigated in all the strains by Real-Time PCR analysis. Our data showed that 56% of the isolated strains harbored one or more tet resistance genes and that these strains were most frequently isolated from animals living in close contact with humans. Concerning int1, 17 strains (28.3%) harbored this genetic element and eight of these simultaneously contained tet genes. The results of this study highlight the importance of using a molecular approach to detect resistance genetic determinants, whose spread can increase the diffusion of multidrug-resistant strains. Besides, the study of zoonotic bacteria such as Salmonella spp. which significantly contribute to ARGs dissemination should always follow a One Health approach that considers the health of humans, animals, and the environment to be closely related. | 2021 | 34356729 |
| 2802 | 19 | 0.9998 | First Description of Various Bacteria Resistant to Heavy Metals and Antibiotics Isolated from Polluted Sites in Tunisia. Environmental bacteria belonging to various families were isolated from polluted water collected from ten different sites in Tunisia. Sites were chosen near industrial and urban areas known for their high degree of pollution. The aim of this study was to investigate cross-resistance between heavy metals (HM), i.e., silver, mercury and copper (Ag, Hg, and Cu), and antibiotics. In an initial screening, 80 isolates were selected on ampicillin, and 39 isolates, retained for further analysis, could grow on a Tris-buffered mineral medium with gluconate as carbon source. Isolates were identified based on their 16S rRNA gene sequence. Results showed the prevalence of antibiotic resistance genes, especially all isolates harbored the bla (TEM) gene. Some of them (15.38%) harbored bla (SHV). Moreover, several were even ESBLs and MBLs-producers, which can threaten the human health. On the other hand, 92.30%, 56.41%, and 51.28% of the isolates harbored the heavy metals resistance genes silE, cusA, and merA, respectively. These genes confer resistance to silver, copper, and mercury. A cross-resistance between antibiotics and heavy metals was detected in 97.43% of our isolates. | 2021 | 34335797 |