Antibiotic resistance in faecal bacteria isolated from horses receiving virginiamycin for the prevention of pasture-associated laminitis. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
281201.0000Antibiotic resistance in faecal bacteria isolated from horses receiving virginiamycin for the prevention of pasture-associated laminitis. Enterococcus faecium, a major cause of potentially life-threatening hospital-acquired human infections, can be resistant to several antimicrobials, such that streptogramin quinupristin-dalfopristin (Q/D) is one of the few antibiotics still effective. Consequently use of the streptogramin virginiamycin as an animal growth promoter was banned in the EU in 1999 as some believed this contributed to the emergence of Q/D resistant E. faecium. Virginiamycin is advocated for preventing equine pasture-associated laminitis, but its effect on equine faecal bacterial Q/D resistance has not been determined. Faecal samples were obtained from horses receiving virginiamycin, horses co-grazing and horses not exposed to virginiamycin. Streptogramin resistant E. faecium were cultured from 70% (21/30) of animals treated with virginiamycin, 75% (18/24) of co-grazing animals and 69% (11/16) of animals not exposed. ermB and vatD genes were detected using real time PCR in 63% and 66% of animals treated with virginiamycin, 75% and 71% of co-grazing animals and 63% and 69% of animals not exposed. Antimicrobial resistance genes were present only in samples which had cultured Q/D resistant E. faecium. There was no significant difference between groups with respect to antimicrobial resistance. The gene load of vatD was significantly (p=0.04) greater in unexposed animals compared to those treated with virginiamycin. The use of virginiamycin to prevent pasture-associated laminitis does not appear to be related to an increased Q/D resistance frequency. However, in view of the high frequency of resistance within all groups, the horse is a reservoir of Q/D resistant genes and clones that potentially could be transferred transiently to humans.201121676560
282110.9998Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.200919157515
281420.9998Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. The use of antimicrobials in commercial broiler poultry production results in the presence of drug-resistant bacteria shed in the excreta of these birds. Because these wastes are largely land-disposed these pathogens can affect the surrounding environment and population. In this analysis, we characterized the survival of antimicrobial-resistant enterococci and staphylococci and resistance genes in poultry litter. Temperature, moisture, and pH were measured in the litter over a 120-day period from storage sheds at three conventional US broiler chicken farms, as well as colony-forming units of Enterococcus spp. and Staphylococcus spp. Selected isolates from each sampling event were tested for resistance to eight antimicrobials used in poultry feeds as well as the presence of resistance genes and mobile genetic elements. Temperatures greater than 60 degrees C were only intermittently observed in the core of the litter piles. Both antimicrobial-resistant enterococci and staphylococci, as well as resistance genes persisted throughout the 120-day study period. Resistance genes identified in the study include: erm(A), erm(B), erm (C), msr(A/B), msr(C), and vat(E). This study indicates that typical storage practices of poultry litter are insufficient for eliminating drug-resistant enterococci and staphylococci, which may then be released into the environment through land disposal.200919541298
281330.9998Quantity of the tetracycline resistance gene tet(M) differs substantially between meat at slaughterhouses and at retail. Concentrations of the tetracycline resistance gene tet(M) per square centimeter were assessed in meat from the slaughterhouse (n = 100) and from retail (n = 100) by real-time quantitative PCR. The study revealed a substantial contamination of retail meat with the tetracycline resistance gene tet(M), with a mean of 4.34 log copies per cm² fasces in chicken and 5.58 log copies per cm² fasces in pork. Quantitative resistance gene analysis provides an interesting tool for risk assessment and is becoming increasingly important. For both chicken and pork, tet(M) concentrations were significantly higher in meat at retail, compared to meat at slaughter. Cultural investigations revealed substantial differences in the prevalence of listeria and enterococci, and of E. coli and coliforms, between meat at slaughter (n = 500) and at retail (n = 500). However, the differences in the prevalence of 2 investigated groups of potential tet(M)-carriers (enterococci, listeria) could not sufficiently explain the differences in tet(M) concentrations, since increasing concentrations of tet(M) were accompanied by decreasing prevalences of these potential tet(M)-carriers. The percentage of tetracycline susceptible indicator bacteria (E. faecalis, E. coli) did not differ between meat at slaughter and meat at retail. Higher concentrations of tet(M) at retail might correlate with the proliferation of other genera than enterococci and listeria, but there is also a reason to discuss whether secondary contaminants might carry tet(M) more often than the primary flora of meat. PRACTICAL APPLICATION: We successfully applied the direct quantitative monitoring of resistance genes in meat, which generally might aid as a useful and rapid additional tool for risk assessment. We know that bacteria provide a large pool of resistance genes, which are widely shared between each other-the larger the pool is, the more genes might be exchanged. Thus, in terms of resistance gene monitoring, we should sometimes overcome the restricted view on single bacteria and look at the gene pool, instead.201121729069
282040.9998Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.200717005283
284650.9997Class 1 integron and Enterococcus spp. abundances in swine farms from the " Suckling piglets" to the "Fatteners" production category. Swine farms are considered a hotspot of antimicrobial resistance and may contribute to the spread of antibiotic-resistant and/or pathogenic bacteria into the environment as well as to farm workers. In this study, swine fecal samples have been collected over the primary production, selecting three categories, i.e., "Suckling piglets", "Weaning pigs" and "Fatteners", in six intensive swine farms, for two years. Feces were analysed for the detection and abundance of class 1 integrons (used as proxy of antibiotic resistance and of anthropogenic pollution), and of enterococci [fecal indicator bacteria (FIB) and potentially pathogenic for humans] by quantitative Real Time PCR. Furthermore, Enterococcus faecalis and Enterococcus faecium were isolated, analysed for the presence of the intI1 gene by Real Time PCR and genetically typed by Pulsed-Field Gel Electrophoresis. Both enterococci and class 1 integrons were significantly more abundant in the Suckling piglets (p = 0.0316 and 0.0242, respectively). About 8% of the isolated enterococci were positive for the intI1 gene by Real Time PCR. E. faecalis and E. faecium were found genetically heterogeneous and no specific pattern could be identified as the driver for their presence along the pig primary production. These findings suggest that the "Suckling piglets" category of production represents the key point where to mitigate the risk of transmission of enterococci and class 1 integrons with associated antibiotic resistance genes to humans and spread into the environment.202236155350
313160.9997Integron-containing bacteria in faeces of cattle from different production systems at slaughter. AIMS: To determine the prevalence and characteristics of integron-containing bacteria in faeces of cattle from grass-fed, lot-fed, or organically produced cattle. METHODS AND RESULTS: Faecal samples from grass-fed (n = 125), lot-fed (n = 125) and organic (n = 135) cattle were tested for the presence of class 1 and class 2 integrons by using PCR and colony hybridisation. The prevalence of class 1 and class 2 integrase were higher in lot-fed cattle (71% and 62%) than grass-fed cattle (52% and 30%) which in turn were higher than organic cattle (25% and 11%). Isolation rates of integron-containing bacteria were reflective of PCR prevalence results. CONCLUSIONS: The antimicrobial resistance genes harboured by the integrons differed little across the three systems and were typically to antimicrobials that would rarely be used therapeutically or for growth promotion purposes. The differences in prevalence observed between the systems may be a function of the intensiveness of each system. SIGNIFICANCE AND IMPACT OF THE STUDY: Integron-containing bacteria may be present in all cattle production systems regardless of the amount of antimicrobial use and confirms that the prudent use of antimicrobials is required so that the development of integrons harbouring genes significant to human medicine is avoided.200919302491
284570.9997Florfenicol administration in piglets co-selects for multiple antimicrobial resistance genes. Antimicrobial use in food-producing animals such as pigs is a significant issue due to its association with antimicrobial resistance. Florfenicol is a broad-spectrum phenicol antibiotic used in swine for various indications; however, its effect on the swine microbiome and resistome is largely unknown. This study investigated these effects in piglets treated intramuscularly with florfenicol at 1 and 7 days of age. Fecal samples were collected from treated (n = 30) and untreated (n = 30) pigs at nine different time points up until 140 days of age, and the fecal metagenomes were sequenced. The fecal microbiomes of the two groups of piglets were most dissimilar in the immediate period following florfenicol administration. These differences were driven in part by an increase in the relative abundance of Clostridium scindens, Enterococcus faecalis, and Escherichia spp. in the florfenicol-treated piglets and Fusobacterium spp., Pauljensenia hyovaginalis, and Ruminococcus gnavus in the control piglets. In addition to selecting for florfenicol resistance genes (floR, fexA, and fexB), florfenicol also selected for genes conferring resistance to the aminoglycosides, beta-lactams, or sulfonamides up until weaning at 21 days of age. Florfenicol-resistant Escherichia coli isolated from these piglets were found to carry a plasmid with floR, along with tet(A), aph(6)-Id, aph(3″)-Ib, sul2, and bla(TEM-1)/bla(CMY-2). A plasmid carrying fexB and poxtA (phenicols and oxazolidinones) was identified in florfenicol-resistant Enterococcus avium, Enterococcus faecium, and E. faecalis isolates from the treated piglets. This study highlights the potential for co-selection and perturbation of the fecal microbial community in pre-weaned piglets administered florfenicol.IMPORTANCEAntimicrobial use remains a serious challenge in food-animal production due to its linkage with antimicrobial resistance. Antimicrobial resistance can reduce the efficacy of veterinary treatment and can potentially be transferred to humans through the food chain or direct contact with animals and their environment. In this study, early-life florfenicol treatment in piglets altered the composition of the fecal microbiome and selected for many unrelated antimicrobial resistance genes up until weaning at 21 days of age. Part of this co-selection process appeared to involve an Escherichia coli plasmid carrying a florfenicol resistance gene along with genes conferring resistance to at least four other antimicrobial classes. In addition, florfenicol selected for certain genes that provide resistance to multiple antimicrobial classes, including the oxazolidinones. These results highlight that florfenicol can co-select for multiple antimicrobial resistance genes, and their presence on mobile genetic elements suggests the potential for transfer to other bacteria.202439584815
563680.9997Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor. The aim of this study was to assess the impact of ciprofloxacin, clindamycin, and placebo administration on culturable Gram-negative isolates and the antibiotic resistance genes they harbor. Saliva and fecal samples were collected from healthy human volunteers before and at intervals, up to 1 year after antibiotic administration. Samples were plated on selective and nonselective media to monitor changes in different colony types or bacterial species. Following ciprofloxacin administration, there was a decrease of Escherichia coli in feces and after clindamycin administration a decrease of Bacteroides in feces and Leptotrichia in saliva, which all returned to pretreatment levels within 1 to 4 months. Ciprofloxacin administration also resulted in an increase in ciprofloxacin-resistant Veillonella in saliva, which persisted for 12 months. Additionally, 949 aerobic and anaerobic isolates purified from ciprofloxacin- and clindamycin-containing plates were screened for the presence of resistance genes. Resistance gene carriage was widespread in isolates from all three treatment groups, and no association was observed between genes and antibiotic administration. Although the anaerobic component of the microbiota was not a major reservoir of aerobe-associated antimicrobial resistance (AMR) genes, we detected the sulfonamide resistance gene sul2 in anaerobic isolates. The longitudinal nature of the study allowed identification of distinct Escherichia coli clones harboring multiple resistance genes, including one carrying an extended-spectrum β-lactamase blaCTX-M group 9 gene, which persisted in the gut for up to 4 months. This study provided insight into the effects of antibiotic administration on healthy microbiota and the diversity of resistance genes harbored therein.201525987611
287890.9997Risk factors for antimicrobial resistance among fecal Escherichia coli from residents on forty-three swine farms. Fecal Escherichia coli (n = 555) were isolated from 115 residents on 43 farrow-to-finish swine farms to determine the prevalence of antimicrobial resistance and associated risk factors. Susceptibility to 21 antimicrobials was determined and the overall prevalence of antimicrobial resistance was 25.8%. Pair-wise difference in prevalences of resistance to individual antimicrobials was significant between isolates from residents on farms that fed medicated swine rations compared to those that did not (p = 0.013). Cross-resistance among antimicrobials of same class and multidrug-resistance were observed. Logistic regression models revealed the following risk factors positively associated with antimicrobial resistance: use of antimicrobials in pigs on farms; number of hours per week that farmers spent in their pig barns; handling of sick pigs; and intake of antimicrobials by farm residents. This study indicates that occupational exposure of farmers to resistant bacteria and use of antimicrobials in pig farming may constitute a source of resistance in humans, although the human health impacts of such resistance is unknown. The consumption of antimicrobials by farmers appeared to constitute a significant risk for resistance development. Fecal E. coli from farm residents may act as a reservoir of resistance genes for animal and/or human pathogens.200717536936
5646100.9997Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.202336515883
2819110.9997Prevalence of Antibiotic-Resistant Lactobacilli in Sepsis Patients with Long-Term Antibiotic Therapy. Lactobacilli are the most common probiotic bacteria found in the human gut microbiota, and the presence of acquired antibiotic resistance determinants carried on mobile genetic elements must be screened due to safety concerns. Unnecessary and inappropriate antibiotic therapy, as well as ingested antibiotic resistance bacteria (originating from food or food products), influence the abundance of antibiotic resistance genes in human guts, with serious clinical consequences. The current study looked into the antibiotic resistance of lactobacilli isolated from the guts of sepsis patients on long-term antibiotic therapy. The broth microdilution method was used to investigate the minimum inhibitory concentrations (MICs) of antibiotics such as imipenem, meropenem, erythromycin, tetracycline, cefepime, ciprofloxacin, and gentamycin, and the molecular genetic basis of resistance was studied based on the MIC values. The isolates were phenotypically resistant to tetracycline (20%), fluoroquinolone (20%), and macrolide (5%). Following that, resistance genes for tetracycline [tet(L), tet(O), tet(K), and tet(M)], macrolide [erm(B) and erm(C)], and beta-lactams [bla(CMY)] were investigated. Tetracycline or macrolide resistance genes were not found in the isolates, and only one isolate possessed the bla(CMY) resistance gene. The findings suggested that tetracycline and macrolide resistance may be linked to other resistance genes that were not investigated in this study. Because tetracyclines, fluoroquinolones, and macrolides are commonly used in clinics and animals, there has been concern about the spread of resistance in humans. If acquired antibiotic resistance is passed down through mobile genetic elements, it may serve as a reservoir of resistance for gut pathogens and other microbiome environments.202236088413
5545120.9997Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
2844130.9997High throughput qPCR analyses suggest that Enterobacterales of French sheep and cow cheese rarely carry genes conferring resistances to critically important antibiotics for human medicine. Bacteria present in raw milk can carry acquired or intrinsic antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). However, only a few studies have evaluated raw milk cheese as a potential reservoir of ARGs. This study thus aimed at providing new data regarding resistance markers present in raw milk cheese. Sheep (n = 360) and cow (n = 360) cheese samples produced in France were incubated in buffered peptone water supplemented with acriflavin or novobiocin; as corroborated by 16S metabarcoding, samples were enriched in Gram-negative bacteria since Escherichia coli and Hafnia alvei respectively accounted for 40 % and 20 % of the samples' microbiota. Screening of the samples for the presence of 30 ARGs and 16 MGEs by high throughput qPCR array showed that nine ARGs conferring resistances to 1st-generation beta-lactams, aminoglycosides, trimethoprim/sulfonamides and tetracyclines occurred in >75 % of both sheep and cow samples. This is neither surprising nor alarming since these resistance genes are widely spread across the One Health human, animal and environmental sectors. Conversely, genes conferring resistances to last-generations cephalosporins were rarely identified, while those conferring resistances to carbapenems or amikacin, which are restricted to human use, were never detected. Multiple MGEs were detected, the most frequent ones being IncF plasmids, confirming the potential transmission of ARGs. Our results are in line with the few studies of the resistome of milk or milk cheese showing that genes conferring resistances to 1st-generation beta-lactams, aminoglycosides and tetracyclines families are widespread, while those conferring resistances to critically important antibiotics are rare or absent.202337384974
2828140.9997The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances.202133558560
2865150.9997Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
3129160.9997Effect of therapeutic administration of β-lactam antibiotics on the bacterial community and antibiotic resistance patterns in milk. Dairy cows with mastitis are frequently treated with antibiotics. The potential effect of antibiotics on the milk microbiome is still not clear. Therefore, the objective of this research was to investigate the effect of 2 commonly used cephalosporins on the milk microbiota of dairy cows and the antibiotic resistance genes in the milk. The milk samples were collected from 7 dairy cows at the period before medication (d 0), medication (d 1, 2, 3), withdrawal period (d 4, 6, 8), and the period after withdrawal (d 9, 11, 13, 15). We applied 16S rRNA sequencing to explore the microbiota changes, and antibiotic resistance patterns were investigated by quantitative PCR. The microbiota richness and diversity in each sample were calculated using the Chao 1 (richness), Shannon (diversity), and Simpson (diversity) indices. The cephalosporins treatment lowered the Simpson diversity value at the period of withdrawal. Members of the Enterobacter genera were the most affected bacteria associated with mastitis. Meanwhile, antibiotic resistance genes in the milk were also influenced by antibiotic treatment. The cephalosporins treatment raised the proportion of bla(TEM) in milk samples at the period of withdrawal. Therefore, the treatment of cephalosporins led to change in the milk microbiota and increase of β-lactam resistance gene in the milk at the time of withdrawal period.202133741154
5647170.9997Resistance of bacterial isolates from poultry products to therapeutic veterinary antibiotics. Bacterial isolates from poultry products were tested for their susceptibility to 10 antibiotics commonly used in the therapeutic treatment of poultry. Bacteria were isolated from fresh whole broiler carcasses or from cut-up meat samples (breast with or without skin, wings, and thighs) that were either fresh or stored at 4 or 13 degrees C (temperatures relevant to poultry-processing facilities). The Biolog system was used to identify isolates, and a broth dilution method was used to determine the antibiotic resistance properties of both these isolates and complementary cultures from the American Type Culture Collection. The antibiotics to which the most resistance was noted were penicillin G, sulfadimethoxine, and erythromycin; the antibiotic to which the least resistance was noted was enrofloxacin. Individual isolates exhibited resistances to as many as six antibiotics, with the most common resistance pattern involving the resistance of gram-negative bacteria to penicillin G, sulfadimethoxine, and erythromycin. Differences in resistance patterns were noted among 18 gram-positive and 7 gram-negative bacteria, and comparisons were made between species within the same genus. The data obtained in this study provide a useful reference for the species and resistance properties of bacteria found on various raw poultry products, either fresh or stored at temperatures and for times relevant to commercial processing, storage, and distribution. The results of this study show that resistance to antibiotics used for the therapeutic treatment of poultry occurs in bacteria in the processing environment.200312540187
1933180.9997Antibiotic Resistance Genes Occurrence in Conventional and Antibiotic-Free Poultry Farming, Italy. Antimicrobial resistance is a complex and widespread problem threatening human and animal health. In poultry farms, a wide distribution of resistant bacteria and their relative genes is described worldwide, including in Italy. In this paper, a comparison of resistance gene distribution in litter samples, recovered from four conventional and four antibiotic-free broiler flocks, was performed to highlight any influence of farming systems on the spreading and maintenance of resistance determinants. Conventional PCR tests, targeting the resistance genes related to the most used antibiotics in poultry farming, along with some critically important antibiotics for human medicine, were applied. In conventional farms, n. 10 out of n. 30 investigated genes were present in at least one sample, the most abundant fragments being the tet genes specific for tetracyclines, followed by those for aminoglycosides and chloramphenicol. All conventional samples resulted negative for colistin, carbapenems, and vancomycin resistance genes. A similar trend was observed for antibiotic-free herds, with n. 13 out of n. 30 amplified genes, while a positivity for the mcr-1 gene, specific for colistin, was observed in one antibiotic-free flock. The statistical analysis revealed a significant difference for the tetM gene, which was found more frequently in the antibiotic-free category. The analysis carried out in this study allowed us to obtain new data about the distribution of resistance patterns in the poultry industry in relation to farming types. The PCR test is a quick and non-expensive laboratory tool for the environmental monitoring of resistance determinants identifying potential indicators of AMR dissemination.202236139170
5634190.9997Effects of antibiotic use in sows on resistance of E. coli and Salmonella enterica Typhimurium in their offspring. To determine effects of exposure of parental animals to antibiotics on antibiotic resistance in bacteria of offspring, sows were either treated or not treated with oxytetracycline prior to farrowing and their pigs were challenged with Salmonella enterica Typhimurium and treated or not treated with oxytetracycline and apramycin. Fecal Escherichia coli were obtained from sows, and E. coli and salmonella were recovered from pigs. Antibiotic resistance patterns of isolates were determined using a minimum inhibitory concentration (MIC) analysis. Polymerase chain reaction (PCR) and electroporation were used to characterize the genetic basis for the resistance and to determine the location of resistance genes. Treatments had little effect on resistance of the salmonella challenge organism. The greatest resistance to apramycin occurred in E. coli from pigs treated with apramycin and whose sows had earlier exposure to oxytetracycline. Resistance to oxytetracycline was consistently high throughout the study in isolates from all pigs and sows; however, greater resistance was noted in pigs nursing sows that had previous exposure to that drug. The aac(3)-IV gene, responsible for apramycin resistance, was found in approximately 90% of apramycin-resistant isolates and its location was determined to be on plasmids. Several resistant E. coli bio-types were found to contain the resistance gene. These results indicate that resistance to apramycin and oxytetracycline in E. coli of pigs is affected by previous use of oxytetracycline in sows.200516156702