Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
280401.0000Multiple antimicrobial resistance of gram-negative bacteria from natural oligotrophic lakes under distinct anthropogenic influence in a tropical region. The aim of this study was to evaluate the resistance to ten antimicrobial agents and the presence of bla ( TEM1 ) gene of Gram-negative bacteria isolated from three natural oligotrophic lakes with varying degrees of anthropogenic influence. A total of 272 indigenous bacteria were recovered on eosin methylene blue medium; they were characterized for antimicrobial resistance and identified taxonomically by homology search and phylogenetic comparisons. Based on 16S ribosomal RNA sequences analysis, 97% of the isolates were found to be Gram-negative bacteria; they belonged to 11 different genera. Members of the genera Acinetobacter, Enterobacter, and Pseudomonas predominated. Most of the bacteria were resistant to at least one antimicrobial. The incidence of resistance to beta-lactams, chloramphenicol, and mercury was high, whereas resistance to tetracycline, aminoglycosides, and nalidixic acid was low. There was a great frequency of multiple resistances among the isolates from the three lakes, although no significant differences were found among the disturbed and reference lakes. The ampicillin resistance mechanism of 71% of the isolates was due to the gene bla ( TEM1 ). Our study suggests that multiresistant Gram-negative bacteria and the bla ( TEM1 ) gene are common in freshwater oligotrophic lakes, which are subject to different levels of anthropogenic inputs.200919504148
286310.9999Detection of Aminoglycoside Resistant Bacteria in Sludge Samples From Norwegian Drinking Water Treatment Plants. Through a culture-based approach using sludge from drinking water treatment plants, this study reports on the presence of aminoglycoside resistant bacteria at 23 different geographical locations in Norway. Sludge samples are derived from a large environmental area including drinking water sources and their surrounding catchment areas. Aminoglycoside resistant bacteria were detected at 18 of the sample sites. Only five samples did not show any growth of isolates resistant to the selected aminoglycosides, kanamycin and gentamycin. There was a statistically significant correlation between the numbers of kanamycin and gentamycin resistant bacteria isolated from the 23 samples, perhaps suggesting common determinants of resistance. Based on 16S rRNA sequencing of 223 aminoglycoside resistant isolates, three different genera of Bacteroidetes were found to dominate across samples. These were Flavobacterium, Mucilaginibacter and Pedobacter. Further phenotypic and genotypic analyses showed that efflux pumps, reduced membrane permeability and four assayed genes coding for aminoglycoside modifying enzymes AAC(6')-Ib, AAC(3')-II, APH(3')-II, APH(3')-III, could only explain the resistance of a few of the isolates selected for testing. aph(3')-II was detected in 1.6% of total isolates, aac(6')-Ib and aph(3')-III in 0.8%, while aac(3')-II was not detected in any of the isolates. The isolates, for which potential resistance mechanisms were found, represented 13 different genera suggesting that aminoglycoside resistance is widespread in bacterial genera indigenous to sludge. The present study suggests that aminoglycoside resistant bacteria are present in Norwegian environments with limited anthropogenic exposures. However, the resistance mechanisms remain largely unknown, and further analyses, including culture-independent methods, could be performed to investigate other potential resistance mechanisms. This is, to our knowledge, the first large scale nationwide investigation of aminoglycoside resistance in the Norwegian environment.201930918503
339320.9998Antibiotic resistance of gram-negative bacteria in rivers, United States. Bacteria with intrinsic resistance to antibiotics are found in nature. Such organisms may acquire additional resistance genes from bacteria introduced into soil or water, and the resident bacteria may be the reservoir or source of widespread resistant organisms found in many environments. We isolated antibiotic-resistant bacteria in freshwater samples from 16 U.S. rivers at 22 sites and measured the prevalence of organisms resistant to beta-lactam and non-beta-lactam antibiotics. Over 40% of the bacteria resistant to more than one antibiotic had at least one plasmid. Ampicillin resistance genes, as well as other resistance traits, were identified in 70% of the plasmids. The most common resistant organisms belonged to the following genera: Acinetobacter, Alcaligenes, Citrobacter, Enterobacter, Pseudomonas, and Serratia.200212095440
339430.9998Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. The Pseudomonas genus, which includes environmental and pathogenic species, is known to present antibiotic resistances, and can receive resistance genes from multi-resistant enteric bacteria released into the environment via faecal rejects. This study was aimed to investigate the resistome of Pseudomonas populations that have been in contact with these faecal bacteria. Thus, faecal discharges originating from human or cattle were sampled (from 12 points and two sampling campaigns) and 41 Pseudomonas species identified (316 isolates studied). The resistance phenotype to 25 antibiotics was determined in all isolates, and we propose a specific antibiotic resistance pattern for 14 species (from 2 to 9 resistances). None showed resistance to aminoglycosides, tetracycline, or polymyxins. Four species carried a very low number of resistances, with none to β-lactams. Interestingly, we observed the absence of the transcriptional activator soxR gene in these four species. No plasmid transfer was highlighted by conjugation assays, and a few class 1 but no class 2 integrons were detected in strains that may have received resistance genes from Enterobacteria. These results imply that the contribution of the Pseudomonas genus to the resistome of an ecosystem first depends on the structure of the Pseudomonas populations, as they may have very different resistance profiles.202031930390
555540.9998New sequence types and multidrug resistance among pathogenic Escherichia coli isolates from coastal marine sediments. The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes.201222447595
555450.9998High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. BACKGROUND: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. METHODOLOGY/PRINCIPAL FINDINGS: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to > or =15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, bla(TEM-1), tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. CONCLUSIONS: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.200920027306
564360.9998Antibiotic resistance gene profiling of faecal and oral anaerobes collected during an antibiotic challenge trial. Here we describe a study examining the antibiotic resistance gene carriage in anaerobes collected during a clinical study. The results demonstrated that genes normally associated with anaerobes were most prevalent such as tetQ, cepA and cblA although several genes associated with Enterobacteriaceae including sul2, blaSHV and strB were also detected.201323933434
592270.9998Incidence of infectious drug resistance among lactose-fermenting bacteria isolated from raw and treated sewage. Raw and treated sewage samples were examined for antibiotic-resistant, lactose-fermenting bacteria. Approximately 1% of the total lactose-fermenting bacteria were multiply resistant. Of these organisms, 50% were capable of transferring all or part of their resistance to a drug-sensitive recipient. Only 43% of those isolated on media containing a single antibiotic were capable of resistance transfer, whereas 57% of those recovered on multiple antibiotic plates transferred resistance. R factors conferring resistance to chloramphenicol, streptomycin, and tetracycline; streptomycin and tetracycline; and ampicillin, streptomycin, and tetracycline accounted for 22, 19, and 15%, respectively, of those identified. The data indicate a significant level of infectious drug resistance among the intestinal bacteria of the urban population.19695370461
286580.9998Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
554990.9998Analysis of Antibiotic Resistance and Biofilm-Forming Capacity in Tetracycline-Resistant Bacteria from a Coastal Lagoon. Concerns have been raised regarding co-selection for antibiotic resistance among bacteria exposed to antibiotics used as growth promoters for some livestock and poultry species. Tetracycline had been commonly used for this purpose worldwide, and its residue has been associated with selection of resistant bacteria in aquatic biofilms. This study aimed to determine the resistance profile, the existence of some beta-lactamases genes and the capacity to form biofilm of bacteria isolated from water samples previously exposed to tetracycline (20 mg/L). Thirty-seven tetracycline-resistant bacterial strains were identified as Serratia marcescens, Escherichia coli, Morganella morganii, Pseudomonas aeruginosa, Citrobacter freundii, Providencia alcalifaciens, and Enterococcus faecium. The highest percentage of resistance was for ampicillin (75.75%) and amoxicillin/clavulanic acid (66.66%) in the Gram-negative bacteria and an E. faecium strain showed high resistance to vancomycin (minimum inhibitory concentration 250 μg/mL). Among the strains analyzed, 81.09% had multidrug resistance and eight Gram-negatives carried the bla(OXA-48) gene. All strains were able to form biofilm and 43.23% were strong biofilm formers. This study suggests that resistant bacteria can be selected under selection pressure of tetracycline, and that these bacteria could contribute to the maintenance and spread of antimicrobial resistance in this environment.202235325574
3361100.9998The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. AIM: Previous analysis of tet39 suggests it may be present in other bacterial species. Hence, we investigated the host range of tet39 among bacterial from a poultry waste polluted river in Southwestern Nigeria. METHODS AND RESULTS: Thirteen resistant bacterial isolated from the water and sediment of the polluted river was investigated for the presence of tetracycline resistance genes tetA, tetB, tetC, tet39 and the transposon integrase gene of the Tn916/1545 family by PCR. While tetA, tetB, tetC and integrase genes cannot be detected in any of the organisms, tet39 was detected in eight of the tested organisms including three Gram-positive species. Sequence analysis showed the genes have high sequence identities (> or =99%) with tet39 of Acinetobacter sp. LUH5605, the first and only bacterial genus from which the gene has been reported to date. This is a novel observation. CONCLUSIONS: This study shows that apart from Acinetobacter, tet39 is present in other bacterial species tested in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study adds to available information on the occurrence and distribution of tet39 among environmental bacteria and suggests that the gene has a broader host range than previously reported.200919196439
5644110.9998Identification and Characterization of Antibiotic-Resistant, Gram-Negative Bacteria Isolated from Korean Fresh Produce and Agricultural Environment. The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.202337317216
2864120.9998Case study on the soil antibiotic resistome in an urban community garden. Urban agricultural soils can be an important reservoir of antibiotic resistance, and have great food safety and public health indications. This study investigated antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. In total, 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, MI, USA. The most prevalent antibiotic resistance phenotype demonstrated by Gram-negative bacteria was resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%) and ceftriaxone (71.1%). All Gram-positive bacteria were resistant to gentamicin, kanamycin and penicillin. Genes encoding resistance to quinolones, β-lactams and tetracyclines were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in the quinolone and tetracycline resistance genes tested, respectively. Positive correlation (P<0.05) was identified among groups of antibiotic resistance genes, and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment.201829857032
2734130.9998High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the bla(CTX,)qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.202236360888
3389140.9998Isolation and characterization of integron-containing bacteria without antibiotic selection. The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.200414982773
1931150.9998The level of antimicrobial resistance of sewage isolates is higher than that of river isolates in different Escherichia coli lineages. The dissemination of antimicrobial-resistant bacteria in environmental water is an emerging concern in medical and industrial settings. Here, we analysed the antimicrobial resistance of Escherichia coli isolates from river water and sewage by the use of a combined experimental phenotypic and whole-genome-based genetic approach. Among the 283 tested strains, 52 were phenotypically resistant to one or more antimicrobial agents. The E. coli isolates from the river and sewage samples were phylogenetically indistinguishable, and the antimicrobial-resistant strains were dispersedly distributed in a whole-genome-based phylogenetic tree. The prevalence of antimicrobial-resistant strains as well as the number of antimicrobials to which they were resistant were higher in sewage samples than in river samples. Antimicrobial resistance genes were more frequently detected in strains from sewage samples than in those from river samples. We also found that 16 river isolates that were classified as Escherichia cryptic clade V were susceptible to all the antimicrobials tested and were negative for antimicrobial resistance genes. Our results suggest that E. coli strains may acquire antimicrobial resistance genes more frequently and/or antimicrobial-resistant E. coli strains may have higher rates of accumulation and positive selection in sewage than in rivers, irrespective of their phylogenetic distribution.202033087784
3397160.9998Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. The objective of the study was to improve the understanding of antibiotic resistance (AR) ecology through characterization of antibiotic-resistant commensal isolates associated with an aquaculture production system. A total of 4767 isolates non-susceptible to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or cefotaxime (Ctx), originated from fish, feed, and environmental samples of an aquaculture farm with no known history of antibiotic applications were examined. Close to 80% of the isolates exhibited multi-drug resistance in media containing the corresponding antibiotics, and representative AR genes were detected in various isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance in other bacteria by transformation. The AR traits in many isolates were stable in the absence of selective pressure. AR-rich feed and possibly environmental factors may contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration test, brain heart infusion medium was found more suitable for majority of the bacteria examined than cation-adjusted Mueller Hinton broth, with latter being the recommended medium for clinical isolates by standard protocol. The data indicated a need to update the methodology due to genetic diversity of microbiota for better understanding of the AR ecology.201526441859
5646170.9998Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG(5)-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.202336515883
3557180.9998Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water. Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.201626991286
5548190.9998Prevalence of Antimicrobial Resistance Among the Hydrogen Sulfide Producing Bacteria Isolated on XLD Agar from the Poultry Fecal Samples. Poultry products remain as one of the most popular and extensively consumed foods in the world and the introduction of hydrogen sulfide (H(2)S) producing antibiotic resistant bacterial species into it is an emerging challenge. The current study has been designed to analyze the distribution of antibiotic resistance among the H(2)S producing bacteria isolated from the fecal samples of chickens from different poultry farms. Here, twenty bacterial isolates were selected based on their ability to produce H(2)S on XLD agar, and the16S rDNA sequencing was carried out for their molecular identification. The results showed the isolates as belong to Salmonella spp. and Citrobacter spp. and in the antibiotic susceptibility test (AST), three of the Salmonella strains were found to be resistant to antibiotics such as tetracycline, doxycycline, nalidixic acid, and amikacin. Also, fourteen Citrobacter strains showed resistance towards azithromycin, and furthermore, eleven of them were also resistant to streptomycin. Resistance towards tetracycline was observed among five of the Citrobacter strains, and seven were resistant to doxycycline. Further molecular screening by the PCR has showed three of the Salmonella strains along with eight Citrobacter isolates to have tetA gene along with four of the Citrobacter strains to have co-harbored bla(TEM) gene. The results on biofilm formation have also demonstrated three Salmonella strains along with nine Citrobacter strains to have the ability to form moderate biofilm. The study thus describes the occurrence of H(2)S producing multidrug-resistant bacteria in poultry feces, which might contribute towards the dissemination of antibiotic resistance genes to other microorganisms including human pathogens with likely risk to treat disease conditions.202437540287