Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
279701.0000Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. We sought to determine the distribution of resistance and the tetracycline resistance genes among bacteria isolated from a swine confined animal feeding facility where tetracycline-containing feed had been in use for over 20 years. Samples collected from feed, hogs, hog houses, waste lagoon, soil, surface water and well water were screened for the presence of (a) resistant Escherichia coli and enterococci and (b) tetracycline-resistant strains of all species. Genomic DNA was extracted from the latter strain collection and fragments from 16S rDNA and ten tetracycline resistance genes (tetA, tetB, tetC, tetE, tetH, tetL, tetM, tetS, tetT and rumB) were polymerase chain reaction-amplified and a partial nucleotide sequence was obtained. In this environment, 77% of E. coli and 68% of enterococci isolated were tetracycline resistant. Tetracycline resistance was found in 26 different bacterial genera and in 60 species. Single resistance gene alleles (as defined by nucleotide sequence) were present in multiple species. There was evidence of gene recombination and multiple different tetracycline resistance genes were present in single bacterial isolates. These data provide further evidence for the widespread distribution of resistance genes in microbial populations in settings in which there is ongoing subtherapeutic antimicrobial use.200717287111
592110.9999Prevalence of tetracycline resistance genes in oral bacteria. Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tetracycline resistance genes in these isolates were identified by multiplex PCR and DNA sequencing. Tetracycline-resistant bacteria constituted an average of 11% of the total cultivable oral microflora. A representative 105 tetracycline-resistant isolates from the 20 samples were investigated; most of the isolates carried tetracycline resistance genes encoding a ribosomal protection protein. The most common tet gene identified was tet(M), which was found in 79% of all the isolates. The second most common gene identified was tet(W), which was found in 21% of all the isolates, followed by tet(O) and tet(Q) (10.5 and 9.5% of the isolates, respectively) and then tet(S) (2.8% of the isolates). Tetracycline resistance genes encoding an efflux protein were detected in 4.8% of all the tetracycline-resistant isolates; 2.8% of the isolates had tet(L) and 1% carried tet(A) and tet(K) each. The results have shown that a variety of tetracycline resistance genes are present in the oral microflora of healthy adults. This is the first report of tet(W) in oral bacteria and the first report to show that tet(O), tet(Q), tet(A), and tet(S) can be found in some oral species.200312604515
282020.9999Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Antibiotic resistance (AR) in bacteria, a major threat to human health, has emerged in the last few decades as a consequence of the selective pressure exerted by the widespread use of antibiotics in medicine, agriculture and veterinary practice and as growth promoters in animal husbandry. The frequency of 11 genes [tet(M), tet(O), tet(K), erm(A), erm(B), erm(C), vanA, vanB, aac (6')-Ie aph (2'')-Ia, mecA, blaZ] encoding resistance to some antibiotics widely used in clinical practice was analysed in raw pork and chicken meat and in fermented sausages as well as in faecal samples from the relevant farm animals using a molecular approach based on PCR amplification of bacterial DNA directly extracted from specimens. Some of the 11 AR genes were highly prevalent, the largest number being detected in chicken meat and pig faeces. The genes found most frequently in meat were tet(K) and erm(B); vanB and mecA were the least represented. All 11 determinants were detected in faecal samples except mecA, which was found only in chicken faeces. erm(B) and erm(C) were detected in all faecal samples. The frequency of AR genes was not appreciably different in meat compared to faecal specimens of the relevant animal except for vanB, which was more prevalent in faeces. Our findings suggest that AR genes are highly prevalent in food-associated bacteria and that AR contamination is likely related to breeding rather than processing techniques. Finally, the cultivation-independent molecular method used in this work to determine the prevalence of AR genes in foods proved to be a rapid and reliable alternative to traditional tools.200717005283
279630.9999Distribution of specific tetracycline and erythromycin resistance genes in environmental samples assessed by macroarray detection. A macroarray system was developed to screen environmental samples for the presence of specific tetracycline (Tc(R)) and erythromycin (erm(R)) resistance genes. The macroarray was loaded with polymerase chain reaction (PCR) amplicons of 23 Tc(R) genes and 10 erm(R) genes. Total bacterial genomic DNA was extracted from soil and animal faecal samples collected from different European countries. Macroarray hybridization was performed under stringent conditions and the results were analysed by fluorescence scanning. Pig herds in Norway, reared without antibiotic use, had a significantly lower incidence of antibiotic resistant bacteria than those reared in other European countries, and organic herds contained lower numbers of resistant bacteria than intensively farmed animals. The relative proportions of the different genes were constant across the different countries. Ribosome protection type Tc(R) genes were the most common resistance genes in animal faecal samples, with the tet(W) gene the most abundant, followed by tet(O) and tet(Q). Different resistance genes were present in soil samples, where erm(V) and erm(E) were the most prevalent followed by the efflux type Tc(R) genes. The macroarray proved a powerful tool to screen DNA extracted from environmental samples to identify the most abundant Tc(R) and erm(R) genes within those tested, avoiding the need for culturing and biased PCR amplification steps.200717298370
282840.9999The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances.202133558560
554350.9998Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. AIMS: To carry out a preliminary assessment of the occurrence of resistance to antimicrobials in bacteria that has been isolated from a variety of aquaculture species and environments in Australia. METHOD AND RESULTS: A total of 100 Gram-negative (Vibrio spp. and Aeromonas spp. predominantly) and four Gram-positive bacteria isolated from farmed fish, crustaceans and water from crab larval rearing tanks were obtained from diagnostic laboratories from different parts of Australia. All the isolates were tested for sensitivity to 19 antibiotics and Minimal Inhibitory Concentrations were determined by the agar dilution method. Plasmid DNA was isolated by the alkali lysis method. Resistance to ampicillin, amoxycillin, cephalexin and erythromycin was widespread; resistance to oxytetracycline, tetracycline, nalidixic acid and sulfonamides was common but resistance to chloramphenicol, florfenicol, ceftiofur, cephalothin, cefoperazone, oxolinic acid, gentamicin, kanamycin and trimethoprim was less common. All strains were susceptible to ciprofloxacin. Multiple resistance was also observed and 74.4% of resistant isolates had between one and ten plasmids with sizes ranging 2-51 kbp. CONCLUSIONS: No antibiotics are registered for use in aquaculture in Australia but these results suggest that there has been significant off-label use. SIGNIFICANCE AND IMPACT OF STUDY: Transfer of antibiotic resistant bacteria to humans via the food chain is a significant health concern. In comparison with studies on terrestrial food producing animals, there are fewer studies on antibiotic resistance in bacteria from aquaculture enterprises and this study provides further support to the view that there is the risk of transfer of resistant bacteria to humans from consumption of aquaculture products. From the Australian perspective, although there are no products registered for use in aquaculture, antimicrobial resistance is present in isolates from aquaculture and aquaculture environments.200616630011
282160.9998Antibiotic resistant enterococci and staphylococci isolated from flies collected near confined poultry feeding operations. Use of antibiotics as feed additives in poultry production has been linked to the presence of antibiotic resistant bacteria in farm workers, consumer poultry products and the environs of confined poultry operations. There are concerns that these resistant bacteria may be transferred to communities near these operations; however, environmental pathways of exposure are not well documented. We assessed the prevalence of antibiotic resistant enterococci and staphylococci in stored poultry litter and flies collected near broiler chicken houses. Drug resistant enterococci and staphylococci were isolated from flies caught near confined poultry feeding operations in the summer of 2006. Susceptibility testing was conducted on isolates using antibiotics selected on the basis of their importance to human medicine and use in poultry production. Resistant isolates were then screened for genetic determinants of antibiotic resistance. A total of 142 enterococcal isolates and 144 staphylococcal isolates from both fly and poultry litter samples were identified. Resistance genes erm(B), erm(A), msr(C), msr(A/B) and mobile genetic elements associated with the conjugative transposon Tn916, were found in isolates recovered from both poultry litter and flies. Erm(B) was the most common resistance gene in enterococci, while erm(A) was the most common in staphylococci. We report that flies collected near broiler poultry operations may be involved in the spread of drug resistant bacteria from these operations and may increase the potential for human exposure to drug resistant bacteria.200919157515
286570.9998Antibiotic resistance in soil and water environments. Seven locations were screened for antibiotic-resistant bacteria using a modified agar dilution technique. Isolates resistant to high levels of antibiotics were screened for r plasmids. Low-level resistance (25 micro g x ml(-1)) was widespread for ampicillin, penicillin, tetracycline, vancomycin and streptomycin but not for kanamycin. Resistant populations dropped sharply at high antibiotic levels, suggesting that intrinsic non-emergent mechanisms were responsible for the multiple drug resistance exhibited at low doses. Dairy farm manure contained significantly (P < 0.01) more (%) resistant bacteria than the other sites. Bacteria isolated from a dairy water canal, a lake by a hospital and a residential garden (fertilized by farm manure) displayed resistance frequencies of 77, 75 and 70%, respectively. Incidence of tetracycline resistance was most prevalent at 47-89% of total bacteria. Out of 200 representative isolates analyzed, Pseudomonas, Enterococcus-like bacteria, Enterobacter and Burkholderia species constituted the dominant reservoirs of resistance at high drug levels (50-170 micro g x ml(-1)). Plasmids were detected in only 29% (58) of these bacteria with tetracycline resistance accounting for 65% of the plasmid pool. Overall, resistance trends correlated to the abundance and type of bacterial species present in the habitat. Environmental reservoirs of resistance include opportunistic pathogens and constitute some public health concern.200212396530
554580.9998Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates. Wide varieties of antibiotics are used in poultry farms to improve the growth and also to control the infection in broiler chicken. To identify the seriousness of the same in the poultry sector, current study has been designed to analyze the presence of tetracycline in poultry feed and also the tetracycline resistance among the bacteria released through the excreta of poultry. In the study, 27 bacteria belonging to the Escherichiacoli and Klebsiellapneumoniae. were isolated from the faecal samples collected from five different farms. Antibiotic susceptibility analysis showed 77% of E. coli and 100% of the K. pneumoniae. to be resistant to tetracycline. Further, molecular screening for tetA and tetB genes showed 85.18% of isolates to have tetA and 22.22% with tetB. The presence of tetracycline in collected feed samples was also analysed quantitatively by Liquid chromatography-mass spectrometry (LC-MS). Here, three out of five feed samples were found to be positive for tetracycline. The study showed a direct correlation between the antibiotic supplemented feed and the emergence of antimicrobial resistance among the intestinal microflora. The results of the study indicate the need for strict control over antibiotic use in animal feed to limit the rapid evolution and spread of antimicrobial resistance.202033039593
592290.9998Incidence of infectious drug resistance among lactose-fermenting bacteria isolated from raw and treated sewage. Raw and treated sewage samples were examined for antibiotic-resistant, lactose-fermenting bacteria. Approximately 1% of the total lactose-fermenting bacteria were multiply resistant. Of these organisms, 50% were capable of transferring all or part of their resistance to a drug-sensitive recipient. Only 43% of those isolated on media containing a single antibiotic were capable of resistance transfer, whereas 57% of those recovered on multiple antibiotic plates transferred resistance. R factors conferring resistance to chloramphenicol, streptomycin, and tetracycline; streptomycin and tetracycline; and ampicillin, streptomycin, and tetracycline accounted for 22, 19, and 15%, respectively, of those identified. The data indicate a significant level of infectious drug resistance among the intestinal bacteria of the urban population.19695370461
2935100.9998Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Wild animals are less likely to be exposed directly to clinical antimicrobial agents than domestic animals or humans, but they can acquire antimicrobial-resistant bacteria through contact with humans, animals, and the environment. In the present study, 254 dead free-living birds belonging to 23 bird species were examined by PCR for the presence of tetracycline resistance (tet) genes. A fragment of the spleen was collected from each bird carcass. A portion of the intestine was also taken from 73 of the 254 carcasses. Extracted DNA was subjected to PCR amplification targeting the tet(L), tet(M), and tet(X) genes. In total, 114 (45%) of the 254 birds sampled belonging to 17 (74%) of the 23 bird species tested were positive for one or more tet genes. The tet(M) gene showed a higher frequency than the other tested genes, both in the spleen and in the intestine samples. These results confirm the potential role of wild birds as reservoirs, dispersers, or bioindicators of antimicrobial resistance in the environment.202236611686
3555110.9998Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Antimicrobial resistance (AR) detected by disc diffusion and antimicrobial resistance genes detected by DNA hybridization and polymerase chain reaction with amplicon sequencing were studied in 124 marine bacterial isolates from a Chilean salmon aquaculture site and 76 from a site without aquaculture 8 km distant. Resistance to one or more antimicrobials was present in 81% of the isolates regardless of site. Resistance to tetracycline was most commonly encoded by tetA and tetG; to trimethoprim, by dfrA1, dfrA5 and dfrA12; to sulfamethizole, by sul1 and sul2; to amoxicillin, by blaTEM ; and to streptomycin, by strA-strB. Integron integrase intl1 was detected in 14 sul1-positive isolates, associated with aad9 gene cassettes in two from the aquaculture site. intl2 Integrase was only detected in three dfrA1-positive isolates from the aquaculture site and was not associated with gene cassettes in any. Of nine isolates tested for conjugation, two from the aquaculture site transferred AR determinants to Escherichia coli. High levels of AR in marine sediments from aquaculture and non-aquaculture sites suggest that dispersion of the large amounts of antimicrobials used in Chilean salmon aquaculture has created selective pressure in areas of the marine environment far removed from the initial site of use of these agents.201424612265
2864120.9998Case study on the soil antibiotic resistome in an urban community garden. Urban agricultural soils can be an important reservoir of antibiotic resistance, and have great food safety and public health indications. This study investigated antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. In total, 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, MI, USA. The most prevalent antibiotic resistance phenotype demonstrated by Gram-negative bacteria was resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%) and ceftriaxone (71.1%). All Gram-positive bacteria were resistant to gentamicin, kanamycin and penicillin. Genes encoding resistance to quinolones, β-lactams and tetracyclines were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in the quinolone and tetracycline resistance genes tested, respectively. Positive correlation (P<0.05) was identified among groups of antibiotic resistance genes, and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment.201829857032
5544130.9998Assessing the Effect of Oxytetracycline on the Selection of Resistant Escherichia coli in Treated and Untreated Broiler Chickens. Oxytetracycline (OTC) is administered in the poultry industry for the treatment of digestive and respiratory diseases. The use of OTC may contribute to the selection of resistant bacteria in the gastrointestinal tract of birds or in the environment. To determine the effect of OTC on the selection of resistant Escherichia coli strains post-treatment, bacteria were isolated from droppings and litter sampled from untreated and treated birds. Bacterial susceptibility to tetracyclines was determined by the Kirby-Bauer test. A total of 187 resistant isolates were analyzed for the presence of tet(A), (B), (C), (D), (E), and (M) genes by PCR. Fifty-four strains were analyzed by PFGE for subtyping. The proportion of tetracycline-resistant E. coli strains isolated was 42.88%. The susceptibility of the strains was treatment-dependent. A high clonal diversity was observed, with the tet(A) gene being the most prevalent, followed by tet(C). Even at therapeutic doses, there is selection pressure on resistant E. coli strains. The most prevalent resistance genes were tet(A) and tet(C), which could suggest that one of the main mechanisms of resistance of E. coli to tetracyclines is through active efflux pumps.202338136686
2795140.9998Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.201425302306
2818150.9998Tetracycline resistance associated with commensal bacteria from representative ready-to-consume deli and restaurant foods. Proper knowledge of antibiotic resistance (AR) dissemination is essential for effective mitigation. This study examined the profiles of tetracycline-resistant (Tetr) commensal bacteria from representative ready-to-consume food samples from salad bars at local grocery stores and restaurants. Out of 900 Tetr isolates examined, 158 (17.6%) carried one or more of tetM, tetL, tetS, and tetK genes by conventional PCR, 28 harbored more than one Tetr determinants. The most prevalent genotype was tetM, which was detected in 70.9% of the AR gene carriers, followed by tetL (31.6%), tetS (13.9%), and tetK (2.5%). Identified AR gene carriers included Enterococcus, Lactococcus, Staphylococcus, Brochothrix, Carnobacterium, Stenotrophomonas, Pseudomonas, and Sphingobacterium, by 16S rRNA gene sequence analysis. AR determinants were successfully transmitted, and led to resistance in Streptococcus mutans via natural gene transformation and Enterococcus faecalis via electroporation, suggesting the functionality and mobility of the AR genes from the food commensal bacteria. In addition, the AR traits in many isolates are quite stable, even in the absence of the selective pressure. The identification of new commensal carriers for representative AR genes revealed the involvement of a broad spectrum of bacteria in the horizontal transmission of AR genes. Meanwhile, the spectrum of the antibiotic-resistant bacteria differed from the spectrum of the total bacteria (by denaturing gradient gel electrophoresis) associated with the food items. Our data revealed a common avenue in AR exposure and will assist in proper risk assessment and the development of comprehensive mitigation strategies to effectively combat AR.201021067672
2853160.9998Antibiotic resistance and virulence genes in coliform water isolates. Widespread fecal pollution of surface water may present a major health risk and a significant pathway for dissemination of antibiotic resistance bacteria. The River Rhine is one of the longest and most important rivers in Europe and an important raw water source for drinking water production. A total of 100 coliform isolates obtained from River Rhine (Germany) were examined for their susceptibility to seven antimicrobial agents. Resistances against amoxicillin, trimethoprim/sulfamethoxazole and tetracycline were detected in 48%, 11% and 9% of isolates respectively. The antibiotic resistance could be traced back to the resistance genes bla(TEM), bla(SHV), ampC, sul1, sul2, dfrA1, tet(A) and tet(B). Whereby, the ampC gene represents a special case, because its presence is not inevitably linked to a phenotypic antibiotic resistance. Multiple antibiotics resistance was often accompanied by the occurrence of class 1 or 2 integrons. E. coli isolates belonging to phylogenetic groups A and B1 (commensal) were more predominant (57%) compared to B2 and D groups (43%) which are known to carry virulent genes. Additionally, six E. coli virulence genes were also detected. However, the prevalence of virulence genes in the E. coli isolates was low (not exceeding 4.3% per gene) and no diarrheagenic E. coli pathotypes were detected. This study demonstrates that surface water is an important reservoir of ARGs for a number of antibiotic classes such as sulfonamide, trimethoprim, beta-lactam-antibiotics and tetracycline. The occurrence of antibiotic resistance in coliform bacteria isolated from River Rhine provides evidence for the need to develop management strategies to limit the spread of antibiotic resistant bacteria in aquatic environment.201627497615
2866170.9998Characterization of tetracycline-resistant bacteria in an urbanizing subtropical watershed. AIMS: The objective of this study was to determine whether varying levels of urbanization influence the dominant bacterial species of mildly resistant (0·03 mmol l(-1) tetracycline) and highly resistant (0·06 mmol l(-1) tetracycline) bacteria in sediment and water. Also, the level of urbanization was further evaluated to determine whether the diversity of tetracycline resistance genes present in the isolates and the capability of transferring their resistance were influenced. METHODS AND RESULTS: Sediment and water samples collected from five sampling sites were plated in triplicate on nutrient agar plates with a mild dose (0·03 mmol l(-1) ) and a high dose (0·06 mmol l(-1) ) of tetracycline. Five colonies from each plate plus an additional five from each triplicate group were randomly selected and isolated on nutrient agar containing 0·03 mmol l(-1) tetracycline (400 isolates). The isolates were identified by 16S rRNA gene sequencing and comparison to GenBank using blast. The isolates were also screened for 15 tetracycline resistance genes using a multiplex PCR assay and their ability to transfer resistance through conjugation experiments using a kanamycin-resistant Escherichia. coli K-12 strain labelled with a green fluorescent protein gene. Results from this study indicate that the dominant resistant organisms in this watershed are Acinetobacter spp., Chryseobacterium spp., Serratia spp., Pseudomonas spp., Aeromonas spp. and E. coli. All of these organisms are Gram negative and are closely related to pathogenic species. A majority of the isolates (66%) were capable of transferring their resistance, and there was a greater incidence of tet resistance transfer with increasing urbanization. Also, it was determined that the dominant resistance genes in the watershed are tet(W) and tet(A). CONCLUSION: Urbanization significantly affected dominant tetracycline-resistant bacteria species, but did not affect dominant resistance genes. There was correlation between increased urbanization with an increase in the ability to transfer tetracycline resistance. This indicates that urban areas may select for bacterial species that are capable of transferring resistance. SIGNIFICANCE AND IMPACT OF STUDY: These results indicate that urbanization influences the occurrence of tetracycline-resistant bacteria and the potential for transfer of resistance genes.201323773226
2897180.9998The Role of Flies in Disseminating Plasmids with Antimicrobial-Resistance Genes Between Farms. Dissemination of antimicrobial resistance is a major global public health concern. To clarify the role of flies in disseminating antimicrobial resistance between farms, we isolated and characterized tetracycline-resistant Escherichia coli strains isolated from flies and feces of livestock from four locations housing swine (abattoir, three farms) and three cattle farms. The percentages of isolates from flies resistant to tetracycline, dihydrostreptomycin, ampicillin, and chloramphenicol (80.8%, 61.5%, 53.8%, and 50.0%, respectively) and those from animal feces (80.5%, 78.0%, 41.5%, and 46.3%, respectively) in locations housing swine were significantly higher than those from cattle farms (p<0.05). The rates of resistance in E. coli derived from flies reflected those derived from livestock feces at the same locations, suggesting that antimicrobial resistance spreads between livestock and flies on the farms. The results of pulsed-field gel electrophoresis (PFGE) analysis showed that, with a few exceptions, all E. coli isolates differed. Two pairs of tetracycline-resistant strains harbored similar plasmids with the same tetracycline-resistance genes, although the origin (fly or feces), site of isolation, and PFGE patterns of these strains differed. Therefore, flies may disseminate the plasmids between farms. Our results suggest that flies may be involved not only in spreading clones of antimicrobial-resistant bacteria within a farm but also in the widespread dissemination of plasmids with antimicrobial resistance genes between farms.201526061440
3603190.9998Diversity of tet resistance genes in tetracycline-resistant bacteria isolated from a swine lagoon with low antibiotic impact. Tetracycline resistance has been extensively studied and shown to be widespread. A number of previous studies have clearly demonstrated that a variety of tetracycline resistance genes are present in swine fecal material, treatment lagoons, and the environments surrounding concentrated animal feeding operations (CAFOs). The diversity of tetracycline resistance within a swine lagoon located at a CAFO that used only bacitricin methylene disalicylate as an antibiotic was evaluated by screening 85 tetracycline-resistant isolates for the presence of 18 different genes by performing PCR with primers that target tetracycline efflux genes of Gram-negative bacteria and ribosomal protection proteins. In addition, partial 16S rRNA sequences from each of these isolates were sequenced to determine the identity of these isolates. Of the 85 isolates examined, 17 may represent potential novel species based on BLAST results. Greater than 50% of the isolates (48 out of 85) were found to not contain targeted tet efflux genes. Though minimum inhibitory concentrations ranged widely (16 - >256 mg/L), these values did not give an indication of the tet genes present. Ten new genera were identified that contain at least one tet efflux gene. Five other genera possessed tet efflux genes that were not found in these organisms previously. Interestingly, none of the isolates possessed any of the selected ribosomal protection protein genes. Though tetracycline resistance was found in bacteria isolated from a swine CAFO lagoon, it appears that the limited antibiotic use at this CAFO might have impacted the presence and diversity of tetracycline resistance genes.200718059563