Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
275201.0000Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Surface waters are an unappreciated reservoir of antimicrobial resistance (AMR). Poor sanitation brings different species of environmental bacteria into contact, facilitating horizontal gene transfer. To investigate the role of surface waters as potential reservoirs of AMR, we studied the point prevalence of fecal contamination, AMR genes, and Enterobacteriaceae in an urban lake and rural river system in Northeast Brazil in comparison with a lake and sewer system in Northeast Ohio in the United States. Surface water samples were examined for evidence of human fecal contamination using microbial source tracking and screened for plasmid-mediated fluoroquinolone resistance and carbapenemase genes. Enterobacteriaceae were detected using selective agar followed by antimicrobial susceptibility testing and detection of AMR genes by microarray, and classified by repetitive sequence-based polymerase chain reaction and multilocus sequence typing. Concentrations of human fecal bacteria in the Brazilian urban lake and sewage in Northeast Ohio were similarly high. Filtered water samples from the Brazilian urban lake, however, showed the presence of bla (OXA-48), bla (KPC), bla (VIM-2), qnrS, and aac(6')-lb-cr, whereas only bla (VIM-2) was identified in raw sewage from Northeast Ohio. From the Brazilian urban lake, 85% of the Enterobacteriaceae (n = 40) cultured were resistant to at least one clinically important antibiotic, including ST131 Escherichia coli harboring the extended-spectrum beta-lactamase CTX-M. Although two isolates demonstrated polymyxin resistance, mcr-1/2 was not detected. Our findings indicate that surface waters in an urban Brazilian site can serve as an environmental reservoir of AMR and that improving wastewater treatment and sanitation generally may ameliorate AMR dissemination.201930994094
275310.9999Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Wastewaters serve as important hot spots for antimicrobial resistance and monitoring can be used to analyse the abundance and diversity of antimicrobial resistance genes at the level of large bacterial and human populations. In this study, whole genome sequencing of beta-lactamase-producing Escherichia coli and metagenomic analysis of whole-community DNA were used to characterize the occurrence of antimicrobial resistance in hospital, municipal and river waters in the city of Brno (Czech Republic). Cefotaxime-resistant E. coli were mainly extended-spectrum beta-lactamase (ESBL) producers (95.6%, n = 158), of which the majority carried bla(CTX-M) (98.7%; n = 151) and were detected in all water samples except the outflow from hospital wastewater treatment plant. A wide phylogenetic diversity was observed among the sequenced E. coli (n = 78) based on the detection of 40 sequence types and single nucleotide polymorphisms (average number 34,666 ± 15,710) between strains. The metagenomic analysis revealed a high occurrence of bacterial genera with potentially pathogenic members, including Pseudomonas, Escherichia, Klebsiella, Aeromonas, Enterobacter and Arcobacter (relative abundance >50%) in untreated hospital and municipal wastewaters and predominance of environmental bacteria in treated and river waters. Genes encoding resistance to aminoglycosides, beta-lactams, quinolones and macrolides were frequently detected, however bla(CTX-M) was not found in this dataset which may be affected by insufficient sequencing depth of the samples. The study pointed out municipal treated wastewater as a possible source of multi-drug resistant E. coli and antimicrobial resistance genes for surface waters. Moreover, the combination of two different approaches provided a more holistic view on antimicrobial resistance in water environments. The culture-based approach facilitated insight into the dynamics of ESBL-producing E. coli and the metagenomics shows abundance and diversity of bacteria and antimicrobial resistance genes vary across water sites.202133232750
275520.9999The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: bla(GES), bla(OXA-58), bla(TEM), qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to β-lactams (bla(VEB-1), bla(IMP-1), bla(GES), bla(OXA-58), bla(CTX-M), and bla(TEM)) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.202236009054
275430.9999Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. AIM: The current study was conducted to determine the antimicrobial resistance profile and genetic relatedness of Aeromonas sp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP) and river water. METHODS AND RESULTS: We detected the presence of genes conferring resistance to β-lactam, quinolone and aminoglycoside. Multilocus sequence typing was carried out to differentiate the strains, and multilocus phylogenetic analysis was used to identify the species. A total of 28 cefotaxime-resistant Aeromonas sp. strains were identified, harbouring uncommon Guiana-extended-spectrum (GES)-type β-lactamases (GES-1, GES-5, GES-7 and GES-16). Multidrug-resistant Aeromonas sp. were found in hospital wastewater, WWTP and sanitary effluent, and A. caviae was identified as the most prevalent species (85·7%). CONCLUSION: The release of untreated healthcare effluents, presence of antimicrobials in the environment, in addition to multidrug-resistant Aeromonas sp., are all potential factors for the spread of resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a vast repertoire of antimicrobial resistance genes (ARG) in Aeromonas sp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. Hospital and sanitary effluents serve as potential sources of bacteria harbouring ARG and are a threat to public health.202133306232
331140.9999Appearance of mcr-9, bla(KPC), cfr and other clinically relevant antimicrobial resistance genes in recreation waters and sands from urban beaches, Brazil. The co-occurrence of mcr-like and carbapenemase-encoding genes have been reported mainly in humans and animals, whereas, in the environment, studies are gradually increasing due to the One Health approach. In this study, we investigated antimicrobial resistance genes (ARGs) in water and sand samples from marine environments in Brazil. Total DNA from 56 samples (33 sands and 23 waters) was obtained and 27 different ARGs were detected, highlighting the presence of mcr-9, bla(KPC) and cfr genes. Additionally, the microbiological analysis revealed that sand samples of all analyzed beaches were not recommended for primary use, whereas water samples from most beaches were classified as unsuitable for bathing. The presence of clinically relevant ARGs in urban beaches suggests the presence of antimicrobial-resistant bacteria. Furthermore, to the best of our knowledge, this is the first report of mcr-9 and cfr genes in the environment from Brazil and recreational areas worldwide.202133839570
275050.9998Extended-spectrum β-lactamases genes in Gram-negative isolates from an urban river in Nicaragua. Limited resources and inadequate surveillance systems in developing countries have hindered research on antibiotic resistance gene transfer in aquatic environments. In this context, our study aimed to identify extended-spectrum beta-lactamase gene variants in Gram-negative isolates from the Tipitapa River-a significant Central America ecosystem. Samples were collected and assessed for key water parameters: dissolved oxygen, electrical conductivity, pH, and temperature. We employed a mix of microbiological, biochemical and molecular techniques, including multiplex PCR and sequencing, to characterize bacteria and determine the bla gene variants. Water quality parameters indicated areas impacted by human activities with high mineralization and eutrophication conditions. Among the bacteria analyzed, 48% belonged to the Enterobacteriaceae family, and a significant 88% displayed extended-spectrum beta-lactamases. Sequencing revealed four distinct bla gene variants in 84% of the isolates: bla-SHV-24, bla-SHV-13, bla-TEM-1, and bla-TEM-116, with bla-SHV-24 being the most common (47.62%). This is the first report of bla gene variants in the Tipitapa River, revealing their presence in globally concerning bacteria. The robust methodology enhances surveillance, enables geographic profiling of bla gene variants, and improves our understanding of biochemical patterns and gene transmission dynamics, providing essential insights into the global distribution of antibiotic resistance genes in Central America's natural waters.202539907335
331360.9998The Prevalence and Characterization of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Bacteria from Hospital Sewage, Treated Effluents and Receiving Rivers. Hospital sewage plays a key role in the dissemination of antibiotic-resistant genes (ARGs) by serving as an environmental antimicrobial resistance reservoir. In this study, we aimed to characterize the cephalosporin- and carbapenem-resistant isolates from hospital sewage and receiving rivers. The results showed that ESBL (bla(CTX-M)) and carbapenemase genes (bla(NDM) and bla(KPC)) were widely detected in a number of different bacterial species. These resistance genes were mainly harbored in Enterobacteriaceae, followed by Acinetobacter and Aeromonas isolates. More attention should be given to these bacteria as important vectors of ARGs in the environment. Furthermore, we showed that the multidrug resistance phenotype was highly prevalent, which was found in 85.5% Enterobacteriaceae and 75% Acinetobacter strains. Notably, the presence of carbapenemase genes in isolates from treated effluents and receiving rivers indicates that the discharges of wastewater treatment plants could be an important source for high-risk resistance genes propagation to the environment. In conclusion, this study shows a high prevalence of ESBL- and carbapenemase-producing bacteria in hospital sewage and receiving rivers in China. These findings have serious implications for human health, and also suggest the need for more efforts to control the dissemination of resistant bacteria from hospital sewage into the environment.202032069792
274170.9998ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., bla(CTX-M) or bla(SHV) and mcr-1) in the environment.IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.202032033950
262880.9998Occurrence and persistence of multidrug-resistant Enterobacterales isolated from urban, industrial and surface water in Monastir, Tunisia. The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a bla(CTX-M) gene - bla(CTX-M-15) (n = 22) and bla(CTX-M-55) (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia.202438460700
262790.9998High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of bla (CTX-M-15) was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, bla (TEM-1) was present in 95% of the strains, followed by qnrS1 and armA (17% each), bla (CTX-M-15) (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where bla (CTX-M-15) was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of bla (CTX-M-15) was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of bla (CTX-M-15). The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.202133633708
2756100.9998Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/bla(OXA-51) complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.202235122847
2837110.9998Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli. Escherichia coli with reduced susceptibility to quinolones isolated from different environmental sources (urban wastewater treatment plants, n=61; hospital effluent, n=10; urban streams, n=9; gulls, n=18; birds of prey, n=17) and from hospitalised patients (n=28) were compared based on multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The habitats with the most diversified genotypes of quinolone-resistant E. coli, corresponding to the highest genetic diversity (H'), were wastewater and gulls. In addition, genetically distinct populations were observed in clinical samples and birds of prey, suggesting the influence of the habitat or selective pressures on quinolone-resistant E. coli. The close genetic relatedness between isolates of clinical origin and from gulls and wastewater suggests the existence of potential routes of propagation between these sources. The most common sequence types were ST131 and ST10, with ST131 being highly specific to patients, although distributed in all of the other habitats except birds of prey. The prevalence of antimicrobial resistance was significantly higher in isolates from patients and gulls than from other sources (P<0.01), suggesting that the effect of selective pressures met by isolates subjected to strong human impacts. The evidence presented suggests the potential circulation of bacteria between the environmental and clinical compartments, with gulls being a relevant vector of bacteria and resistance genes.201527842875
2613120.9998Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotic-resistant Enterobacteriaceae are regularly detected in livestock. As pathogens, they cause difficult-to-treat infections and, as commensals, they may serve as a source of resistance genes for other bacteria. Slaughterhouses produce significant amounts of wastewater containing antimicrobial-resistant bacteria (AMRB), which are released into the environment. We analyzed the wastewater from seven slaughterhouses (pig and poultry) for extended-spectrum β-lactamase (ESBL)-carrying and colistin-resistant Enterobacteriaceae. AMRB were regularly detected in pig and poultry slaughterhouse wastewaters monitored here. All 25 ESBL-producing bacterial strains (19 E. coli and six K. pneumoniae) isolated from poultry slaughterhouses were multidrug-resistant. In pig slaughterhouses 64% (12 of 21 E. coli [57%] and all four detected K. pneumoniae [100%]) were multidrug-resistant. Regarding colistin, resistant Enterobacteriaceae were detected in 54% of poultry and 21% of pig water samples. Carbapenem resistance was not detected. Resistant bacteria were found directly during discharge of wastewaters from abattoirs into water bodies highlighting the role of slaughterhouses for environmental surface water contamination.202134065908
2610130.9998Antimicrobial Resistant Salmonella in Canal Water in Bangkok, Thailand: Survey Results Between 2016 and 2019. Antimicrobial resistance (AMR) in environmental reservoirs is an emerging global health concern, particularly in urban settings with inadequate wastewater management. This study aimed to investigate the prevalence and resistance profiles of Salmonella spp. in canal water in Bangkok and assess the distribution of key antibiotic resistance genes (ARGs). Between 2016 and 2019, a total of 1381 water samples were collected from 29 canals. Salmonella spp. were isolated using standard microbiological methods and tested for susceptibility to 13 antibiotics. Polymerase chain reaction (PCR) was used to detect extended-spectrum β-lactamase (ESBL) genes and class 1 integron. Salmonella was found in 89.7% of samples. Among these, 62.1% showed resistance to at least one antimicrobial, and 54.8% were multidrug-resistant (MDR). The highest resistance was observed against streptomycin (41.4%). ESBL genes, predominantly blaCTX-M, were detected in 72.2% of tested isolates, while class 1 integrons were found in 67.8%, indicating a strong potential for gene dissemination. The results highlight urban canals as critical environment reservoirs of AMR Salmonella serovars, posing significant public health risks, particularly where canal water is used for agriculture, household, or recreational purposes. Strengthened environmental surveillance and effective wastewater regulation are urgently needed to mitigate AMR bacteria transmission at the human-environment-animal interface.202541007477
2626140.9998Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water. Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes bla(CTX-M-9) and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.201728383517
2625150.9998Spread of extended-spectrum beta-lactamase-producing Escherichia coli from a swine farm to the receiving river. The dissemination of drug-resistant bacteria into different environments has posed a grave threat to public health, but data on the spread of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) from animal farms to the receiving river are limited. Here, 57 ESBL-producing E. coli isolated from a pig farm and the receiving river were analyzed in terms of drug resistance, ESBL genes, and enterobacterial repetitive intergenic consensus (ERIC). The results showed that ESBL-producing E. coli from swine feces and downstream water of the pig farm outfall overlapped substantially in drug resistance and ESBL genes. Additionally, six ESBL-producing E. coli from the downstream water exhibited 100 % genetic similarity with strains from the swine feces. In conclusion, effluents of animal farms are a likely contributor to the presence of ESBL-producing E. coli in aquatic environments.201525921760
2612160.9998Prevalence of Extended-Spectrum β-Lactamase-Producing Bacteria on Fresh Vegetables in Japan. Extended-spectrum β-lactamase (ESBL)-producing bacteria are spreading rapidly, posing a threat to human and animal health. Contamination of vegetables with antimicrobial-resistant bacteria or those harboring antimicrobial resistance genes or a combination of both presents a potential route of transmission to humans. Therefore, the aim of this study was to determine the prevalence of these bacteria in fresh vegetables in Japan. A total of 130 samples of fresh vegetables were collected from seven supermarkets in Japan. The predominant genus detected was Pseudomonas spp., including 10 ESBL-producing strains, isolated from 10 (7.7%) of the vegetable samples. Two ESBL genes were detected, bla(TEM-116) (n = 7) and bla(SHV-12) (n = 3), and some of these strains were resistant to multiple antibiotics. Because vegetables are often consumed raw, those contaminated with ESBL producers could represent an important route of transmission to humans in Japan. Thus, more stringent hygiene measures and monitoring are required to prevent transmission via this source.201931532252
3310170.9998Metagenome and Resistome Analysis of Beta-Lactam-Resistant Bacteria Isolated from River Waters in Surabaya, Indonesia. Antimicrobial agents are administered to humans and livestock, and bacterial antimicrobial resistance (AMR) and antimicrobial agents are released into the environment. In this study, to investigate the trend of AMR in humans, livestock, and the environment, we performed a metagenomic analysis of multidrug-resistant bacteria with CHROMagar ESBL in environmental river water samples, which were collected using syringe filter units from waters near hospitals, downtown areas, residential areas, and water treatment plants in Surabaya, Indonesia. Our results showed that Acinetobacter, Pseudomonas, Aeromonas, Enterobacter, Escherichia, and Klebsiella grew in CHROMagar ESBL; they were most frequently detected in water samples from rivers surrounding hospitals contaminated with various AMR genes (ARGs) in high levels. These results identified bacteria as ARG reservoirs and revealed that hospitals could be sources for various ARGs disseminated into the environment. In conclusion, this study details a novel metagenomic analysis of collected bacteria in environmental water samples using a syringe filter unit for an AMR epidemiological study based on the One Health approach.202438258025
1913180.9998Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase bla(NDM) and bla(KPC) resistance genes in hospital wastewater. Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; bla(TEM) in 33.1%, bla(CTX-M) in 25.4%, bla(KPC) in 25.4%, bla(NDM) 8.8%, bla(SHV) in 5.3%, and bla(OXA-48) in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase bla(KPC) was found in six Citrobacter spp. and E. coli, while bla(NDM) was detected in two distinct Enterobacter spp. and E. coli. Notably, bla(NDM-1) was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase bla(KPC) and bla(NDM). We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as bla(KPC) and bla(NDM) within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.202439012101
2734190.9998High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the bla(CTX,)qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.202236360888