Characterization of Bacterial Communities and Their Antibiotic Resistance Profiles in Wastewaters Obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
273601.0000Characterization of Bacterial Communities and Their Antibiotic Resistance Profiles in Wastewaters Obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. In Nigeria, pharmaceutical wastewaters are routinely disseminated in river waters; this could be associated with public health risk to humans and animals. In this study, we characterized antibiotic resistant bacteria (ARB) and their antibiotic resistance profile as well as screening for sul1 and sul2 genes in pharmaceutical wastewater effluents. Bacterial composition of the wastewater sources was isolated on non-selective media and characterized by the polymerase chain reaction (PCR) amplification of the 16S rRNA genes, with subsequent grouping using restriction fragment length polymorphism (RFLP) and sequencing. The antibiotics sensitivity profiles were investigated using the standard disk diffusion plate method and the minimum inhibitory concentrations (MICs) of selected antibiotics on the bacterial isolates. A total of 254 bacterial strains were isolated, and majority of the isolates were identified as Acinetobacter sp., Klebsiella pneumonia, Proteus mirabilis, Enterobacter sp. and Bacillus sp. A total of 218 (85.8%) of the bacterial isolates were multidrug resistant. High MICs values were observed for all antibiotics used in the study. The result showed that 31.7%, 21.7% and 43.3% of the bacterial isolates harbored sul1, sul2, and Intl1 genes, respectively. Pharmaceuticals wastewaters are potential reservoirs of ARBs which may harbor resistance genes with possible risk to public health.201829966226
273510.9999Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla (PSE) were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.202336929890
273820.9999Diversity of bacteria carrying antibiotic resistance genes in hospital raw sewage in Southeastern Brazil. In recent decades, antibiotic-resistant bacteria (ARB) emerged and spread among humans and animals worldwide. In this study, we evaluated the presence of ARB and antibiotic resistance genes (ARGs) in the raw sewage of two hospitals in Brazil. Sewage aliquots were inoculated in a selective medium with antibiotics. Bacterial identification was performed by MALDI-TOF and ARGs were assessed by polymerase chain reaction (PCR). A total of 208 strains from both hospitals were isolated (H1 = 117; H2 = 91). A wide variety of Enterobacterales and non-Enterobacterales species were isolated and most of them were Enterobacter spp. (13.0%), Proteus mirabilis (10.1%), and Klebsiella pneumoniae (9.6%). blaTEM and blaKPC were the most frequent β-lactamase-encoding genes and the predominant macrolide resistance genes were mph(A) and mel. Many species had the three tetracycline resistance genes (tetD, tetM, tetA) and strB was the prevalent aminoglycoside resistance gene. Two Staphylococcus haemolyticus strains had the mecA gene. Quinolone, colistin, and vancomycin resistance genes were not found. This study showed that hospital raw sewage is a great ARB and ARG disseminator. Strict monitoring of hospital sewage treatment is needed to avoid the spread of these genes among bacteria in the environment.202336640035
273430.9999High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the bla(CTX,)qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.202236360888
273340.9999Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. We examined the prevalence and diversity of carbapenem-resistant bacteria (CRB) in untreated drinking water. Prevalence was estimated in plate count agar (PCA) and R2A media with or without antibiotics. Clonal relatedness of isolates was established by repetitive extragenic palindroitic (REP)-PCR. Phylogeny was based on the 16S rRNA gene. Antimicrobial susceptibility was assessed by disc diffusion methods. Genes encoding beta-lactamases and integrases were inspected by PCR. CRB ranged from 0.02% to 15.9% of cultivable bacteria, while ampicillin-resistant bacteria ranged from 1.5% to 31.4%. Carbapenem-resistant isolates affiliated with genera Stenotrophomonas, Pseudomonas, Janthinobacterium, Chryseobacterium, Sphingobacterium, Acidovorax, Caulobacter, Cupriavidus, and Sphingomonas. CRB were highly resistant to beta-lactams, but mostly susceptible to other classes. Transmissible beta-lactamase genes and integrase genes were not detected. The genus-specific bla(L1) was detected in 61% of the Stenotrophomonas isolates. Contrarily to what has been reported for extensively used antibiotics, low levels of carbapenem resistance were detected in untreated drinking water, often represented by intrinsically resistant genera. Production of chromosomal-encoded carbapenemases was the prevalent carbapenem resistance mechanism. Results suggest that the dissemination of anthropogenic-derived carbapenem resistance is at an early stage. This presents an opportunity to rationally develop monitoring strategies to identify dissemination routes and assess the impact of human actions in the environmental resistome.201222663561
286950.9999Antibiotic resistance and antibiotic-resistance genes of Pseudomonas spp. and Escherichia coli isolated from untreated hospital wastewater. Hospitals are considered an important factor in the spread of antibiotic-resistant bacteria (ARBs) and antibiotic-resistance genes (ARGs). The purpose of this research was to characterize the microbial populations in hospital wastewater and investigated the prevalence of β-lactamase, SulІ and QnrS resistance genes. In the first step, culture method was used to isolate Pseudomonas aeruginosa and Escherichia coli. In the next step, accurate identification of isolated bacteria was carried out using the polymerase chain reaction (PCR) method, then the resistance of the bacteria at different concentrations of antibiotics (8-128 μg/mL) was examined. Finally the ARGs were detected using the PCR method. The averages of heterotrophic plate count (HPC) and ARB concentration in wastewater samples were 1.8 × 10(8) and 4.3 × 10(6) CFU/100 mL, respectively. The highest resistance rates were found for sulfamethoxazole and the highest resistance rates in the β-lactamase group were for ceftazidime, while highest sensitivity was for gentamicin and there was no isolate that was sensitive to the studied antibiotics. SulІ and QnrS were the highest and lowest abundance of all ARGs in samples respectively and blaSHV was the highest β-lactam resistance gene. Our results indicated an increase in the resistance of identified bacteria to several antibiotics. So it can be concluded that numerous antibiotic-resistant pathogens and vast numbers of ARGs exist in the human body so that their release from hospitals without effective treatment can cause many dangers to the environment and human health.202134280162
273160.9999Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. BACKGROUND: Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. METHODOLOGY: Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. RESULTS: Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. CONCLUSIONS: This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this strain could shuttle resistance plasmids to pathogenic bacteria.201526108344
273770.9999Meropenem-resistant bacteria in hospital effluents in Seoul, Korea. This study aimed to understand the prevalence, diversity, antibiotic resistance, β-lactamase gene types, and possibility of environmental survival of meropenem-resistant bacteria present in hospital effluents in Seoul, Korea. Water sampling was performed at five general hospitals in Seoul, Korea, in January 2017. Water samples were plated in triplicate on tryptic soy agar plates with 16 mg/L meropenem. Meropenem-resistant bacteria were selected and subjected to 16S rRNA analysis for species determination and PCR for identification of β-lactamase gene types. Resistant bacteria were cultured in sterilized surface water. Meropenem-resistant bacteria exhibited resistance to more than 12 antibiotics and possessed several β-lactamase genes, such as those encoding OXT-M, NDM-1, AmpC, and OXA. They were able to multiply and survive in sterilized surface water for up to 60 days. Multidrug-resistant bacteria represent an environmental health risk, as they can survive in the environment for an extended period of time. Therefore, these bacteria should be monitored before discharge.201830361772
285980.9999Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM(2.5)) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM(2.5) from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.202438855194
527190.9999Occurrence of Antibiotic-Resistant Bacteria and Genes in Two Drinking Water Treatment and Distribution Systems in the North-West Province of South Africa. With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), bla(CTX-M) 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important.202033126462
2739100.9999Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. INTRODUCTION: Wastewaters carrying thousands of human specimens from the community and representing the diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) directly from the community mirror the extent of AR spread in the community and environment. This study aimed to investigate the occurrence and distribution of antibiotic-resistant ESKAPEE bacteria in the community versus clinical settings through monitoring nonclinical and clinical wastewaters. METHODOLOGY: Seven wastewater samples were collected from different environmental sources. Isolates were obtained on general and selective media, biochemically characterized and antimicrobial-susceptibility tests performed by disk diffusion against 13 antibiotics according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines using MastDisc disk cartridges, and 16S rRNA metagenomic analysis was performed for two water samples. RESULTS: Of 43 isolates, all representatives of the ESKAPEE group were recovered from clinical wastewaters, but Gram-positive cocci were not obtained from nonclinical wastewaters. The most predominant isolate was Pseudomonas aeruginosa (n=15; 33%), followed by Escherichia coli (n=9; 20%). Complete (100%) resistance to eleven of the tested antibiotics was observed, with only a few isolates being susceptible to clarithromycin, amikacin, and gentamicin. The lowest (79%) resistance rate was observed for linezolid. The multiple antibiotic resistance (MAR) index was calculated, and the resistance phenotype was independent of the wastewater source, indicated by x (2) (P=0.766). Metagenomic analysis replicated the results, as Pseudomonas spp., Acinetobacter spp., and Escherichia spp. were found to be predominant. The integrase gene (IntI1) was also amplified in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. CONCLUSION: Wastewaters are significant carriers of drug-resistant ESKAPEE bacteria and play an important role in their dissemination. This study endorses the periodic surveillance of water systems to evaluate the presence and burden of antibiotic-resistant pathogens.202236199818
2756110.9999Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/bla(OXA-51) complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.202235122847
1953120.9999Antibiotic-Resistant Bacteria and Resistance Genes in Isolates from Ghanaian Drinking Water Sources. The control of infectious diseases is seriously threatened by the increase in the number of microorganisms resistant to antimicrobial agents. Antibiotic-resistant bacteria have also been identified in the water environment. A field study was performed sampling drinking water sources in seven districts of southern Ghana targeting boreholes, dams, hand-dug wells, and streams during baseflow conditions. Bacteria were isolated (N = 110) from a total of 67 water samples to investigate their antimicrobial susceptibility and to determine their carriage of select antibiotic resistance genes. Bacterial identification was performed using conventional selective media methods and the analytical profile index (API) method. Antibiotic susceptibility tests were carried out using the Kirby-Bauer method. Results indicated that all water sources tested were of poor quality based on the presence of fecal indicator organisms. The most commonly occurring bacterium isolated from water was Klebsiella spp. (N = 24, 21.8%), followed by E. coli (N = 23, 20.9%). Gram-negative bacteria isolates were most commonly resistant to cefuroxime (24.5%), while the Gram-positives were most commonly resistant to meropenem (21.3%). The highest rates of bacterial resistances to more than one antibiotic were observed in Klebsiella spp. (30.0%) followed by E. coli (27.8%). PCR was used to detect the presence of a select antibiotic resistance genes in the Gram-negative isolates. The presence of bla (NDM-1), sull, tet(O), and tet(W) were observed in isolates from all water sources. In contrast, ermF was not detected in any of the Gram-negative isolates from any water source. Most (28.7%) of the resistance genes were observed in E. coli isolates. Reducing microbial contamination of the various water sources is needed to protect public health and to ensure the sustainability of this resource. This further calls for education of the citizenry.202236246472
2929130.9999Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.201121975604
2771140.9999Identification, antibiotic resistance, and virulence profiling of Aeromonas and Pseudomonas species from wastewater and surface water. Aquatic environments are hotspots for the spread of antibiotic-resistant bacteria and genes due to pollution caused mainly by anthropogenic activities. The aim of this study was to evaluate the impact of wastewater effluents, informal settlements, hospital, and veterinary clinic discharges on the occurrence, antibiotic resistance profile and virulence signatures of Aeromonas spp. and Pseudomonas spp. isolated from surface water and wastewater. High counts of Aeromonas spp. (2.5 (± 0.8) - 3.3 (± 0.4) log(10) CFU mL(-1)) and Pseudomonas spp. (0.6 (± 1.0) - 1.8 (± 1.0) log(10) CFU mL(-1)) were obtained. Polymerase chain reaction (PCR) and MALDI-TOF characterization identified four species of Aeromonas and five of Pseudomonas. The isolates displayed resistance to 3 or more antibiotics (71% of Aeromonas and 94% of Pseudomonas). Aeromonas spp. showed significant association with the antibiotic meropenem (χ(2) = 3.993, P < 0.05). The virulence gene aer in Aeromonas was found to be positively associated with the antibiotic resistance gene blaOXA (χ(2) = 6.657, P < 0.05) and the antibiotic ceftazidime (χ(2) = 7.537, P < 0.05). Aeromonas recovered from both wastewater and surface water displayed high resistance to ampicillin and had higher multiple antibiotic resistance (MAR) indices close to the hospital. Pseudomonas isolates on the other hand exhibited low resistance to carbapenems but very high resistance to the third-generation cephalosporins and cefixime. The results showed that some of the Pseudomonas spp. and Aeromonas spp. isolates were extended-spectrum β-lactamase producing bacteria. In conclusion, the strong association between virulence genes and antibiotic resistance in the isolates shows the potential health risk to communities through direct and indirect exposure to the water.202133893564
2861150.9999Antibiotic Resistance Profiles and Genomic Analysis of Endophytic Bacteria Isolates from Wild Edible Fungi in Yunnan. The use of antibiotics has led to the emergence of antibiotic resistance, posing significant challenges in the prevention, control, and treatment of microbial diseases, while threatening public health, the environment, and food safety. In this study, the antibiotic resistance phenotypes and genotypes of 56 endophytic bacteria isolates from three species of wild edible fungi in Yunnan were analyzed using the Kirby-Bauer disk diffusion method and PCR amplification. The results revealed that all isolates were sensitive to ofloxacin, but resistance was observed against 17 other antibiotics. Specifically, 55, 53, and 51 isolates exhibited resistance to amoxicillin, penicillin, and vancomycin, respectively. Antibiotic resistance gene (ARG) detection indicated that the sulfonamide sul1 gene had the highest detection rate (53.57%). Excluding the ARG that was not detected, the lowest detection rates were the sulfonamide sul2 and sul3 genes, both at 1.79%. Among six tetracycline resistance genes, only tetK and tetM were detected. For β-lactam antibiotics, blaTEM, blaVIM, and blaSHV genes were present, while blaOXA was absent. In aminoglycoside resistance genes, aadB was not detected, while detection rates for aac(3')-IIa, acrB, and aadA1 were 3.57%, 1.79%, and 37.5%, respectively. The chloramphenicol Cat gene was detected at a rate of 14.29%, whereas floR was absent. For polypeptide resistance, VanC was detected at 3.57%, with EmgrB not detected. All three quinolone genes were detected, with detection rates of 8.92% for GyrA, 39.29% for GyrB, and 37.5% for ParC. Through phylogenetic analysis, 12 isolates that are closely related to ten common foodborne pathogenic bacteria were further selected for whole-genome sequencing and assembly. Gene annotations revealed that each isolate contained more than 15 ARGs and over 30 virulence factors. Notably, the detection rate of antibiotic resistance phenotypes was higher than that of genotypes, highlighting the importance of studying phenotypic antibiotic resistance that lacks identifiable ARGs. This study enriches the research on endophytes in wild edible fungi and provides new data for microbial ecology and antibiotic resistance research. It also offers critical insights for monitoring microbial antibiotic resistance in wild edible fungi and potentially other food sources, contributing to more effective strategies for ecological protection, sustainable agricultural development, and public health security.202540005728
5314160.9999High prevalence of colistin resistance genes in German municipal wastewater. Bacterial resistance against the last-resort antibiotic colistin is of increasing concern on a global scale. Wastewater is suspected to be one of the pathways by which resistant bacteria and the respective genes are disseminated. We employed a metagenomics approach to detect and quantify colistin resistance genes in raw municipal wastewater sampled at 9 locations all over Germany (14 samples in total, collected in 2016/2017). Our data support the findings of earlier studies according to which the prevalence of the colistin resistance gene mcr-1 is still low. However, we were able to demonstrate that the total prevalence of colistin resistance genes is dramatically underestimated if the focus is put on that specific gene alone. In comparison to mcr-1, other gene variants like mcr-3 and mcr-7 proved to be 10 to 100 times more abundant in samples of untreated wastewater. The average relative abundances expressed as copies per 16S rRNA gene copies were 2.3×10(-3) for mcr-3, 2.2×10(-4) for mcr-4, 3.0×10(-4) for mcr-5, and 4.4×10(-4) for mcr-7. While these four gene variants were ubiquitous in all 14 samples, mcr-1 was detected only once at a relative abundance of 1.4×10(-5). Our results suggest a high risk of increasing incidence of colistin resistance as large amounts of mcr genes are continuously disseminated to diverse microbial communities via the wastewater path.201931398645
1927170.9999First Molecular Characterization and Antibiogram of Bacteria Isolated From Dairy Farm Wastewater in Bangladesh. This pioneering study in Bangladesh combines phenotypic and genotypic approaches to characterize antibiotic-resistant bacteria in dairy farm wastewater, addressing a critical gap in regional antimicrobial resistance (AMR) research. Dairy farming is integral to global food production, yet the wastewater generated by these operations is a significant source of environmental and public health concerns, particularly in the context of antibiotic resistance. This study aimed to isolate and identify antibiotic-resistant bacteria from dairy farm wastewater and evaluate their antibiogram profiles to inform effective management strategies. A total of 60 wastewater samples were collected and subjected to conventional bacterial characterization, followed by molecular detection via PCR and 16S rRNA gene sequencing. The study identified Pseudomonas aeruginosa (35%), Escherichia coli (30%), Bacillus subtilis (16.67%), and Acinetobacter junii (8.33%) as the predominant bacterial species. Sequencing results demonstrated high compatibility with reference sequences, confirming the identities of the isolates. Antibiogram analysis revealed significant resistance patterns: P. aeruginosa exhibited the highest resistance to penicillin (85.71%) and amoxicillin (76.19%), while demonstrating greater sensitivity to ciprofloxacin and cotrimoxazole. E. coli showed notable resistance to penicillin (88.89%), amoxicillin, and ceftriaxone, while B. subtilis and A. junii also demonstrated high levels of resistance to multiple antibiotics. Notably, a substantial proportion of the isolates exhibited multidrug resistance (MDR), with MAR indices ranging from 0.37 to 0.75. Moreover, several antibiotic resistance genes (ARGs) including penA, bla (TEM) , bla (CTX-M) , tetA, tetB, tetC, and ermB were detected across the bacterial species, with high prevalence rates in P. aeruginosa and A. junii, suggesting the potential for horizontal gene transfer and further spread of resistance. These findings underscore the critical need for a One Health approach to mitigate the risks posed by antibiotic-resistant bacteria in dairy farm wastewater, emphasizing the critical importance of responsible antibiotic use and sustainable farming practices to protect public health and environmental integrity.202540458482
1959180.9999Prevalence of Multiple Drug-Resistant Bacteria in the Main Campus Wastewater Treatment Plant of Wolaita Sodo University, Southern Ethiopia. Wastewater treatment plants (WWTPs) are important reservoirs for the development of drug resistance and a potential route for the dissemination of antibiotic resistance genes (ARGs) in the environment. One of the most serious challenges in Ethiopia is the widespread emergence of antibiotic resistance among bacterial pathogens. The bacteria were isolated between September 2018 and May 2019 from the main campus of Wolaita Sodo University in Southern Ethiopia. Using an enrichment process and selective media isolation, 380 wastewater treatment plant samples were collected and screened for the presence of various bacterial isolates. Of a total of 380 wastewater treatment samples, 136 were isolated. Positive prevalence was documented in 136 sample isolates of bacteria from six genera. Escherichia coli 34 (8.94%), Salmonella spp. 15 (3.94%), Shigella spp. 32 (8.42%), Staphylococcus aureus 23 (6.05%), Pseudomonas aeruginosa 21 (5.52%), and Proteus spp. 11 (2.89%). The general prevalence of bacterial isolates was assessed, and 136 (37.58%) samples tested positive for culture. Furthermore, isolates were used to determine sensitivity/resistance patterns using the Kirby-Bauer disc diffusion method and the agar well diffusion technique, respectively. Multiple drug resistance isolates and multiple values of the antibiotic resistance index were evaluated and recorded according to the resistant pattern. Some organisms were sensitive to sparfloxacin and tobramycin, while Staphylococcus aureus was sensitive to methicillin and others showed the highest resistance. At least four of the seven antibiotic classes were found to be resistant to multiple drug resistance isolates, and some classes of antibiotics were found to be highly sensitive to these isolates. Multiple antibiotic resistance index values ranged from 0.37 to 0.75, with Salmonella spp., Shigella spp., and Staphylococcus aureus having the highest score values. The current study has shown that some of the bacterial isolates were resistant to common antibiotics. Therefore, it is recommended that the emergence of multiple drug resistance increased rapidly, pathogenic bacteria inappropriate treated wastewater treatment plant systems were continuously contaminated, and bacterial resistance increased day by day as a result of environmental factors. As a result, due to the serious challenges facing the community's health, multiple drug-resistant prevention and control strategies must be implemented.202236466967
2924190.9999Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. BACKGROUND: Persistence of antibiotic resistant bacteria, including multidrug resistant (MDR) pseudomonads, is an important environmental health problem associated with drinking water distribution systems (DWDS) worldwide. There is paucity of data on the molecular characteristics of antibiotic resistance genes and their mode of transfer among pseudomonads from DWDS located in resource-challenged areas such as southwestern Nigeria. METHODS: MDR pseudomonads (n = 22) were selected from a panel of 296 different strains that were isolated from treated and untreated water in six DWDS located across southwest Nigeria. Primarily, the isolated pseudomonads strains were identified by 16S rDNA sequencing and antibiotic-resistance testing was completed using agar breakpoints assays. The final panel of strains of resistant to more than three classes of antibiotics (i.e. MDR), were further characterized by PCR genotyping, Sanger sequencing, and plasmid profiling. RESULTS: Pseudomonad resistance to gentamicin and streptomycin ranged from 22.7 to 54.6 % while resistance to tetracycline, ceftiofur and sulphamethoxazole ranged from 40.9 to 77.3 %. The most commonly detected antibiotic resistance genes were tet(A) (31.8 % of isolates), sul1 (31.8 %), bla TEM (40.9 %) and aph(3″) (c) (36.4 %). Class 1 integron sequences were evident in 27.3 % of isolates and they harbored genes encoding resistance to aminoglycosides (aadA2, aadA1), trimethoprim (dfrA15, dfr7) and sulphonamide (sul1) while the plasmid ranged between 22 and 130 kb. CONCLUSIONS: Pseudomonas spp, isolated from these DWDS possess resistance genes and factors that are of public and environmental health significance. Therefore, has the potential of contributing to the global scourge of resistance genes transfer in human, animals and environments, thereby, useful in the epidemiology of antimicrobial resistance.201526328550