Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
273301.0000Prevalence and diversity of carbapenem-resistant bacteria in untreated drinking water in Portugal. We examined the prevalence and diversity of carbapenem-resistant bacteria (CRB) in untreated drinking water. Prevalence was estimated in plate count agar (PCA) and R2A media with or without antibiotics. Clonal relatedness of isolates was established by repetitive extragenic palindroitic (REP)-PCR. Phylogeny was based on the 16S rRNA gene. Antimicrobial susceptibility was assessed by disc diffusion methods. Genes encoding beta-lactamases and integrases were inspected by PCR. CRB ranged from 0.02% to 15.9% of cultivable bacteria, while ampicillin-resistant bacteria ranged from 1.5% to 31.4%. Carbapenem-resistant isolates affiliated with genera Stenotrophomonas, Pseudomonas, Janthinobacterium, Chryseobacterium, Sphingobacterium, Acidovorax, Caulobacter, Cupriavidus, and Sphingomonas. CRB were highly resistant to beta-lactams, but mostly susceptible to other classes. Transmissible beta-lactamase genes and integrase genes were not detected. The genus-specific bla(L1) was detected in 61% of the Stenotrophomonas isolates. Contrarily to what has been reported for extensively used antibiotics, low levels of carbapenem resistance were detected in untreated drinking water, often represented by intrinsically resistant genera. Production of chromosomal-encoded carbapenemases was the prevalent carbapenem resistance mechanism. Results suggest that the dissemination of anthropogenic-derived carbapenem resistance is at an early stage. This presents an opportunity to rationally develop monitoring strategies to identify dissemination routes and assess the impact of human actions in the environmental resistome.201222663561
273610.9999Characterization of Bacterial Communities and Their Antibiotic Resistance Profiles in Wastewaters Obtained from Pharmaceutical Facilities in Lagos and Ogun States, Nigeria. In Nigeria, pharmaceutical wastewaters are routinely disseminated in river waters; this could be associated with public health risk to humans and animals. In this study, we characterized antibiotic resistant bacteria (ARB) and their antibiotic resistance profile as well as screening for sul1 and sul2 genes in pharmaceutical wastewater effluents. Bacterial composition of the wastewater sources was isolated on non-selective media and characterized by the polymerase chain reaction (PCR) amplification of the 16S rRNA genes, with subsequent grouping using restriction fragment length polymorphism (RFLP) and sequencing. The antibiotics sensitivity profiles were investigated using the standard disk diffusion plate method and the minimum inhibitory concentrations (MICs) of selected antibiotics on the bacterial isolates. A total of 254 bacterial strains were isolated, and majority of the isolates were identified as Acinetobacter sp., Klebsiella pneumonia, Proteus mirabilis, Enterobacter sp. and Bacillus sp. A total of 218 (85.8%) of the bacterial isolates were multidrug resistant. High MICs values were observed for all antibiotics used in the study. The result showed that 31.7%, 21.7% and 43.3% of the bacterial isolates harbored sul1, sul2, and Intl1 genes, respectively. Pharmaceuticals wastewaters are potential reservoirs of ARBs which may harbor resistance genes with possible risk to public health.201829966226
273420.9999High Frequency of Antibiotic Resistance Genes (ARGs) in the Lerma River Basin, Mexico. The spread of beta-lactamase-producing bacteria is of great concern and the environment has been found to be a main source of contamination. Herein, it was proposed to determine the frequency of antimicrobial-resistant-Gram-negative bacteria throughout the Lerma River basin using phenotypic and molecular methods. Resistant bacteria were isolated with chromogenic media and antimicrobial susceptibility tests were used to characterize their resistance. ARGs for beta-lactams, aminoglycosides, and quinolones were detected by PCR. Species were identified by Sanger sequencing the 16S rRNA gene and the representative genomes of MDR strains were sequenced by NGS. A high variation in the number of isolates was observed in the 20 sampled sites, while observing a low diversity among the resistant bacteria. Of the 12 identified bacterial groups, C. freundii, E. coli, and S. marcescens were more predominant. A high frequency of resistance to beta-lactams, quinolones, and aminoglycosides was evidenced, where the bla(CTX,)qnrB, qnrS y, and aac(6')lb-cr genes were the most prevalent. C. freundii showed the highest frequency of MDR strains. Whole genome sequencing revealed that S. marcescens and K. pneumoniae showed a high number of shared virulence and antimicrobial resistance genes, while E. coli showed the highest number of unique genes. The contamination of the Lerma River with MDR strains carrying various ARGs should raise awareness among environmental authorities to assess the risks and regulations regarding the optimal hygienic and sanitary conditions for this important river that supports economic activities in the different communities in Mexico.202236360888
273530.9999Insight into the Antibiotic Resistance of Bacteria Isolated from Popular Aquatic Products Collected in Zhejiang, China. The present study was aimed to obtain a close insight into the distribution and diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) among the aquatic products collected in Zhejiang, China. A total of 136 presumptive ARB picked up from six aquatic samples were classified into 22 genera and 49 species based on the 16S rDNA sequencing. Aeromonas spp., Shewanella spp., Acinetobacter spp., Myroides spp., Pseudomonas spp., and Citrobacter spp. accounted for 80% of the ARB. Among them, 109 isolates (80.15%) exhibited resistance to at least one antibiotic. Most isolates showed resistance to not only the originally selected drug but also to one to three other tested drugs. The diversity of ARB distributed in different aquatic products was significant. Furthermore, the resistance data obtained from genotypic tests were not entirely consistent with the results of the phenotypic evaluation. The genes qnrS, tetA, floR, and cmlA were frequently detected in their corresponding phenotypic resistant isolates. In contrast, the genes sul2, aac(6')-Ib, and bla (PSE) were less frequently found in the corresponding phenotypically resistant strains. The high diversity and detection rate of ARB and ARGs in aquaculture might be a significant threat to the food chains closely related to human health.202336929890
273740.9999Meropenem-resistant bacteria in hospital effluents in Seoul, Korea. This study aimed to understand the prevalence, diversity, antibiotic resistance, β-lactamase gene types, and possibility of environmental survival of meropenem-resistant bacteria present in hospital effluents in Seoul, Korea. Water sampling was performed at five general hospitals in Seoul, Korea, in January 2017. Water samples were plated in triplicate on tryptic soy agar plates with 16 mg/L meropenem. Meropenem-resistant bacteria were selected and subjected to 16S rRNA analysis for species determination and PCR for identification of β-lactamase gene types. Resistant bacteria were cultured in sterilized surface water. Meropenem-resistant bacteria exhibited resistance to more than 12 antibiotics and possessed several β-lactamase genes, such as those encoding OXT-M, NDM-1, AmpC, and OXA. They were able to multiply and survive in sterilized surface water for up to 60 days. Multidrug-resistant bacteria represent an environmental health risk, as they can survive in the environment for an extended period of time. Therefore, these bacteria should be monitored before discharge.201830361772
275650.9998Characterization of carbapenem resistance in environmental samples and Acinetobacter spp. isolates from wastewater and river water in Poland. The aim of this study was to analyze the prevalence of carbapenem resistance genes in Acinetobacter spp. isolated from wastewater in a municipal WWTP and to determine their spread from treated wastewater to river water with the use of conventional and molecular microbiology methods (qualitative and quantitative PCR and metagenomic analysis). Samples of untreated and treated wastewater and samples of river water obtained upstream and downstream from the wastewater discharge point were collected in 3 seasons (February, June, and September) of 2019. Acinetobacter spp. isolates were obtained by the culture method on the CHROMagar™ Acinetobacter medium. Additionally, environmental DNA was extracted from the samples for metagenomic and qPCR analyses. The presence of beta-lactam resistance genes (Ambler class B and D), insertion sequence ISAba1, and class I, II, and III integron-integrase genes was determined, and the bacterial taxonomic structure and wastewater and river samples was analyzed. Out of the 301 isolates obtained on the CHROMagar™ Acinetobacter medium, 258 belonged to the genus Acinetobacter, including 21 isolates that were identified as Acinetobacter baumannii. The highest number of Acinetobacter spp. and A. baumannii isolates were obtained from wastewater and river water samples collected in June and September. The ISAba1/bla(OXA-51) complex was identified in 13 isolates, which confirms the occurrence of carbapenem-resistance isolates in the analyzed samples. The number of Acinetobacter isolates carrying antibiotic resistance genes (ARGs) increased in river water samples collected downstream from the wastewater discharge point (48 out of 258 isolates - 18.6%) compared to river water samples collected upstream from the wastewater discharge point (34 out of 258 isolates - 13.2%), which suggests that WWTP is a source of pollution in the natural environment. The conducted research provides evidence that bacteria of the genus Acinetobacter may spread alarming beta-lactam resistance in the environment and, therefore, pose a serious epidemiological threat.202235122847
531460.9998High prevalence of colistin resistance genes in German municipal wastewater. Bacterial resistance against the last-resort antibiotic colistin is of increasing concern on a global scale. Wastewater is suspected to be one of the pathways by which resistant bacteria and the respective genes are disseminated. We employed a metagenomics approach to detect and quantify colistin resistance genes in raw municipal wastewater sampled at 9 locations all over Germany (14 samples in total, collected in 2016/2017). Our data support the findings of earlier studies according to which the prevalence of the colistin resistance gene mcr-1 is still low. However, we were able to demonstrate that the total prevalence of colistin resistance genes is dramatically underestimated if the focus is put on that specific gene alone. In comparison to mcr-1, other gene variants like mcr-3 and mcr-7 proved to be 10 to 100 times more abundant in samples of untreated wastewater. The average relative abundances expressed as copies per 16S rRNA gene copies were 2.3×10(-3) for mcr-3, 2.2×10(-4) for mcr-4, 3.0×10(-4) for mcr-5, and 4.4×10(-4) for mcr-7. While these four gene variants were ubiquitous in all 14 samples, mcr-1 was detected only once at a relative abundance of 1.4×10(-5). Our results suggest a high risk of increasing incidence of colistin resistance as large amounts of mcr genes are continuously disseminated to diverse microbial communities via the wastewater path.201931398645
273970.9998Evaluating the Role of Wastewaters as Reservoirs of Antibiotic-Resistant ESKAPEE Bacteria Using Phenotypic and Molecular Methods. INTRODUCTION: Wastewaters carrying thousands of human specimens from the community and representing the diversity of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) directly from the community mirror the extent of AR spread in the community and environment. This study aimed to investigate the occurrence and distribution of antibiotic-resistant ESKAPEE bacteria in the community versus clinical settings through monitoring nonclinical and clinical wastewaters. METHODOLOGY: Seven wastewater samples were collected from different environmental sources. Isolates were obtained on general and selective media, biochemically characterized and antimicrobial-susceptibility tests performed by disk diffusion against 13 antibiotics according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines using MastDisc disk cartridges, and 16S rRNA metagenomic analysis was performed for two water samples. RESULTS: Of 43 isolates, all representatives of the ESKAPEE group were recovered from clinical wastewaters, but Gram-positive cocci were not obtained from nonclinical wastewaters. The most predominant isolate was Pseudomonas aeruginosa (n=15; 33%), followed by Escherichia coli (n=9; 20%). Complete (100%) resistance to eleven of the tested antibiotics was observed, with only a few isolates being susceptible to clarithromycin, amikacin, and gentamicin. The lowest (79%) resistance rate was observed for linezolid. The multiple antibiotic resistance (MAR) index was calculated, and the resistance phenotype was independent of the wastewater source, indicated by x (2) (P=0.766). Metagenomic analysis replicated the results, as Pseudomonas spp., Acinetobacter spp., and Escherichia spp. were found to be predominant. The integrase gene (IntI1) was also amplified in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. CONCLUSION: Wastewaters are significant carriers of drug-resistant ESKAPEE bacteria and play an important role in their dissemination. This study endorses the periodic surveillance of water systems to evaluate the presence and burden of antibiotic-resistant pathogens.202236199818
273280.9998Biofilms in hospital effluents as a potential crossroads for carbapenemase-encoding strains. Bacterial resistance to carbapenem, which is mainly due to the successful dissemination of carbapenemase-encoding genes, has become a major health problem. Few studies have aimed to characterize the level of resistance in the environment, notably in hospital wastewater, which is a likely hotspot for exchange of antibiotic resistance genes. In this work, we looked for the presence of imipenem-resistant bacteria and imipenem in the effluent of the teaching hospital of Clermont-Ferrand, France. Selective growth of bacteria from 14-day old biofilms formed in the pipe sewer showed that 22.1% of the isolates were imipenem-resistant and identified as Aeromonas (n = 23), Pseudomonas (n = 10), Stenotrophomonas (n = 4) and Acinetobacter (n = 1). Fifteen of these strains harbored acquired carbapenemase-encoding genes bla(VIM) (n = 11), bla(OXA-48) (n = 2), bla(GES) (n = 1), bla(NDM) (n = 1). All isolates also harbored associated resistances to aminoglycosides, fluoroquinolones and/or tetracyclin. S1-nuclease pulsed-field gel electrophoresis analysis of eight selected isolates showed that four of them harbored one to two plasmids of molecular weight between 48.5 Kb and 194 Kb. In vitro transformation assays evidenced the presence of bla(VIM) and bla(NDM) on plasmids with the bla(VIM) harboring 80 Kb plasmid having conjugative capacity. The predicted environmental concentration of imipenem in the hospital effluent was 3.16 μg/L, suggesting that biofilm bacteria are subjected to sub-MICs of imipenem within the effluent. However, no imipenem molecule was detected in the hospital effluent, probably owing to its instability: in vitro assays indicated that imipenem's biological activity was no longer detectable after 45 h of storage. However, the predictive value of the hazard quotient relative to the development of resistance was >1.0 (HQr = 28.9 ± 1.9), which indicates a possible risk. The presence of carbapenemase-encoding genes in hospital effluent biofilm strains and their ability to transfer are therefore a potential hazard that should not be neglected and points to the need for monitoring antibiotic resistance in hospital wastewater.201930530220
273190.9998Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. BACKGROUND: Antibiotic resistance genes [ARGs] in aquatic systems have drawn increasing attention they could be transferred horizontally to pathogenic bacteria. Water treatment plants (WTPs) are intended to provide quality and widely available water to the local populace they serve. However, WTPs in developing countries may not be dependable for clean water and they could serve as points of dissemination for antibiotic resistant bacteria. Only a few studies have investigated the occurrence of ARGs among these bacteria including tetracycline resistance genes in water distribution systems in Nigeria. METHODOLOGY: Multi-drug resistant (MDR) bacteria, including resistance to tetracycline, were isolated from treated and untreated water distribution systems in southwest Nigeria. MDR bacteria were resistant to >3 classes of antibiotics based on break-point assays. Isolates were characterized using partial 16S rDNA sequencing and PCR assays for six tetracycline-resistance genes. Plasmid conjugation was evaluated using E. coli strain DH5α as the recipient strain. RESULTS: Out of the 105 bacteria, 85 (81 %) and 20 (19 %) were Gram- negative or Gram- positive, respectively. Twenty-nine isolates carried at least one of the targeted tetracycline resistance genes including strains of Aeromonas, Alcaligenes, Bacillus, Klebsiella, Leucobacter, Morganella, Proteus and a sequence matching a previously uncultured bacteria. Tet(A) was the most prevalent (16/29) followed by tet(E) (4/29) and tet30 (2/29). Tet(O) was not detected in any of the isolates. Tet(A) was mostly found with Alcaligenes strains (9/10) and a combination of more than one resistance gene was observed only amongst Alcaligenes strains [tet(A) + tet30 (2/10), tet(A) + tet(E) (3/10), tet(E) + tet(M) (1/10), tet(E) + tet30 (1/10)]. Tet(A) was transferred by conjugation for five Alcaligenes and two E. coli isolates. CONCLUSIONS: This study found a high prevalence of plasmid-encoded tet(A) among Alcaligenes isolates, raising the possibility that this strain could shuttle resistance plasmids to pathogenic bacteria.201526108344
1709100.9998High prevalence of bla(VIM-1) gene in bacteria from Brazilian soil. This study investigated bacteria from soil samples to (i) determine the main bacterial genera and species having resistance to carbapenem and other β-lactams and (ii) establish if the mechanism of resistance was due to the production of metallo-β-lactamases. The isolates were characterized by PCR for metallo-β-lactamases and integrons, by antimicrobial susceptibility testing, and by sequencing. The antimicrobial profile of 40 imipenem-resistant Gram-positive soil isolates from all Brazilian regions demonstrated that 31 (77.5%) of them were multidrug resistant. Among the 40 isolates, 19 presented the bla(VIM) gene and class 1 integrons by PCR. Six of the 19 isolates were identified as Paenibacillus sp., 12 as Bacillus sp., and just 1 was classified as Staphylococcus sp., by sequencing of the 16S rRNA gene. These results suggest that bacteria from soil can act as a source of bla(VIM-1) genes, representing a threat to public health.201627392282
2754110.9998Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. AIM: The current study was conducted to determine the antimicrobial resistance profile and genetic relatedness of Aeromonas sp. isolated from healthcare and urban effluents, wastewater treatment plant (WWTP) and river water. METHODS AND RESULTS: We detected the presence of genes conferring resistance to β-lactam, quinolone and aminoglycoside. Multilocus sequence typing was carried out to differentiate the strains, and multilocus phylogenetic analysis was used to identify the species. A total of 28 cefotaxime-resistant Aeromonas sp. strains were identified, harbouring uncommon Guiana-extended-spectrum (GES)-type β-lactamases (GES-1, GES-5, GES-7 and GES-16). Multidrug-resistant Aeromonas sp. were found in hospital wastewater, WWTP and sanitary effluent, and A. caviae was identified as the most prevalent species (85·7%). CONCLUSION: The release of untreated healthcare effluents, presence of antimicrobials in the environment, in addition to multidrug-resistant Aeromonas sp., are all potential factors for the spread of resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: We identified a vast repertoire of antimicrobial resistance genes (ARG) in Aeromonas sp. from diverse aquatic ecosystems, including those that encode enzymes degrading broad-spectrum antimicrobials widely used to treat healthcare-associated infections. Hospital and sanitary effluents serve as potential sources of bacteria harbouring ARG and are a threat to public health.202133306232
2749120.9998Culture-independent methods reveal high diversity of OXA-48-like genes in water environments. The carbapenemase OXA-48 was identified for the first time in 2001 and is now one of the greatest concerns in terms of antibiotic resistance. While many studies report clinical OXA-48-like producers, few reports refer bla(OXA-48-like) genes in environmental bacteria. The main goal of this study was to evaluate the diversity of bla(OXA-48-like) genes in aquatic systems, using culture-independent approaches. For that, environmental DNA was obtained from riverine and estuarine water and used to construct clone libraries of bla(OXA-48-like) gene polymerase chain reaction amplicons. bla(OXA-48-like) libraries from river and estuarine water DNA comprised 75 and 70 clones, respectively. Sequence analysis showed that environmental bla(OXA-48-like) genes show a broader diversity than that so far observed in clinical settings. In total, 50 new OXA-48 variants were identified as well as sequences identical to previously reported OXA-48, OXA-181, OXA-199, OXA-204 and OXA-162. Though we have no evidence that these genes were carried by bacteria that are members of the natural heterotrophic flora or bacteria that have entered this particular water environment through anthropogenic sources, these results reinforce the role of aquatic systems as antibiotic resistance reservoirs. The variants of bla(OXA-48) here described should be taken into account when designing molecular strategies for detecting this gene.201728771149
2744130.9998Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters.202032763594
2255140.9998Diversity and metallo-β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. The microbiological quality of drinking water has long been a critical element in public health. Considering the high clinical relevance of Pseudomonas aeruginosa, we examined the filters of household water treatment systems for its presence and characteristics to determine the systems' efficiency in eliminating the bacteria. In total, filters of 50 household water treatment systems were examined. Microbiological and molecular methods were used for the detection and confirmation of P. aeruginosa isolates. Random Amplification of Polymorphic DNA-polymerase chain reaction (RAPD-PCR) was performed to detect similarities and differences among P. aeruginosa isolates. Combined disk (CD) method and double disk synergy test (DDST) were performed to detect metallo-beta-lactamase (MBL)-producing P. aeruginosa isolates. Finally, PCR was performed to detect MBL genes in MBL-producing strains. From the 50 analyzed systems, 76 colonies of P. aeruginosa were identified. In some systems, isolated bacteria from different filters harbored similar genetic profiles, indicating that these isolates may be able to pass through the filter and reach higher filters of the system. Phenotypic tests revealed 7 (9.2%) MBL-producing strains. Two isolates were positive for bla(VIM-1), whereas one isolate was positive for bla(NDM) and bla(IMP-1). The wide distribution of resistant phenotypes and genetic plasticity of these bacteria in household water treatment systems indicate that resistance mechanisms circulate among P. aeruginosa isolates in the environment of the filtration systems. The presence of MBL-producing genes in these systems and P. aeruginosa as a potential reservoir of these resistance genes can be a major concern for public health.201930368151
2755150.9998The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: bla(GES), bla(OXA-58), bla(TEM), qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to β-lactams (bla(VEB-1), bla(IMP-1), bla(GES), bla(OXA-58), bla(CTX-M), and bla(TEM)) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.202236009054
1939160.9998Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Antibiotic-resistant bacteria (ARB) present a global public health problem. Microorganisms are the main cause of hospital-acquired infections, and the biological contamination of hospital environments can cause the outbreak of a series of infectious diseases. Therefore, it is very important to understand the spread of antibiotic-resistant bacteria in hospital environments. This study examines the concentrations of aerobic bacteria and E. coli in ward environments and the airborne transmission of bacterial drug resistance. The results show that the three wards examined have an average aerobic bacterial concentration of 132 CFU∙m(-3) and an average inhalable aerobic bacterial concentration of 73 CFU∙m(-3), with no significant difference (P > 0.05) among the three wards. All isolated E. coli showed multi-drug resistance to not only third-generation cephalosporin antibiotics, but also quinolones, aminoglycosides, and sulfonamides. Furthermore, 51 airborne E. coli strains isolated from the air in the three wards and the corridor were screened for ESBLs, and 12 (23.53%) were ESBL-positive. The drug-resistance gene of the 12 ESBL-positive strains was mainly TEM gene, and the detection rate was 66.67% (8/12). According to a homology analysis with PFGE, 100% homologous E. coli from the ward at 5 m and 10 m outside the ward in the corridor shared the same drug-resistance spectrum, which further proves that airborne E. coli carrying a drug-resistance gene spreads out of the ward through gas exchange. This leads to biological pollution inside, outside, and around the ward, which poses a direct threat to the health of patients, healthcare workers, and surrounding residents. It is also the main reason for the antibiotic resistance in the hospital environment. More attention should be paid to comprehensive hygiene management in the surrounding environment of hospitals.202032070803
2730170.9998Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant. This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.201626469134
1948180.9998Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.201627642751
5312190.9998Presence and Persistence of ESKAPEE Bacteria before and after Hospital Wastewater Treatment. The metagenomic surveillance of antimicrobial resistance in wastewater has been suggested as a methodological tool to characterize the distribution, status, and trends of antibiotic-resistant bacteria. In this study, a cross-sectional collection of samples of hospital-associated raw and treated wastewater were obtained from February to March 2020. Shotgun metagenomic sequencing and bioinformatic analysis were performed to characterize bacterial abundance and antimicrobial resistance gene analysis. The main bacterial phyla found in all the samples were as follows: Proteobacteria, Bacteroides, Firmicutes, and Actinobacteria. At the species level, ESKAPEE bacteria such as E. coli relative abundance decreased between raw and treated wastewater, but S. aureus, A. baumannii, and P. aeruginosa increased, as did the persistence of K. pneumoniae in both raw and treated wastewater. A total of 172 different ARGs were detected; bla(OXA), bla(VEB), bla(KPC), bla(GES), mphE, mef, erm, msrE, AAC(6'), ant(3″), aadS, lnu, PBP-2, dfrA, vanA-G, tet, and sul were found at the highest abundance and persistence. This study demonstrates the ability of ESKAPEE bacteria to survive tertiary treatment processes of hospital wastewater, as well as the persistence of clinically important antimicrobial resistance genes that are spreading in the environment.202438930614