# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2719 | 0 | 1.0000 | Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BACKGROUND: Treated wastewater effluent has been found to contain high levels of contaminants, including disease-causing bacteria such as Listeria and Aeromonas species. The aim of this study was to evaluate the antimicrobial resistance and virulence signatures of Listeria and Aeromonas spp. recovered from treated effluents of two wastewater treatment plants and receiving rivers in Durban, South Africa. METHODS: A total of 100 Aeromonas spp. and 78 Listeria spp. were positively identified based on biochemical tests and PCR detection of DNA region conserved in these genera. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disc diffusion assay. The presence of important virulence genes were detected via PCR, while other virulence determinants; protease, gelatinase and haemolysin were detected using standard assays. RESULTS: Highest resistance was observed against penicillin, erythromycin and nalidixic acid, with all 78 (100%) tested Listeria spp displaying resistance, followed by ampicillin (83.33%), trimethoprim (67.95%), nitrofurantoin (64.10%) and cephalosporin (60.26%). Among Aeromonas spp., the highest resistance (100%) was observed against ampicillin, penicillin, vancomycin, clindamycin and fusidic acid, followed by cephalosporin (82%), and erythromycin (58%), with 56% of the isolates found to be resistant to naladixic acid and trimethoprim. Among Listeria spp., 26.92% were found to contain virulence genes, with 14.10, 5.12 and 21% harbouring the actA, plcA and iap genes, respectively. Of the 100 tested Aeromonas spp., 52% harboured the aerolysin (aer) virulence associated gene, while lipase (lip) virulence associated gene was also detected in 68% of the tested Aeromonas spp. CONCLUSIONS: The presence of these organisms in effluents samples following conventional wastewater treatment is worrisome as this could lead to major environmental and human health problems. This emphasizes the need for constant evaluation of the wastewater treatment effluents to ensure compliance to set guidelines. | 2015 | 26498595 |
| 2718 | 1 | 0.9999 | Virulence-Associated Genes and Antimicrobial Resistance of Aeromonas hydrophila Isolates from Animal, Food, and Human Sources in Brazil. Aeromonads are natural inhabitants of aquatic environments and may be associated with various human or animal diseases. Its pathogenicity is complex and multifactorial and is associated with many virulence factors. In this study, 110 selected Aeromonas hydrophila isolates isolated from food, animals, and human clinical material from 2010 to 2015 were analyzed. Antimicrobial susceptibility testing was performed by the disk diffusion method, and polymerase chain reaction was conducted to investigate the virulence genes hemolysin (hlyA), cytotoxic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), aerolysin (aerA), and DNase-nuclease (exu). At least 92.7% of the isolates had one of the investigated virulence genes. Twenty different virulence profiles among the isolates were recognized, and the five investigated virulence genes were observed in four isolates. Human source isolates showed greater diversity than food and animal sources. Antimicrobial resistance was observed in 46.4% of the isolates, and multidrug resistance was detected in 3.6% of the isolates. Among the 120 isolates, 45% were resistant to cefoxitin; 23.5% to nalidixic acid; 16.6% to tetracycline; 13.7% to cefotaxime and imipenem; 11.8% to ceftazidime; 5.9% to amikacin, gentamicin, and sulfamethoxazole-trimethoprim; and 3.9% to ciprofloxacin and nitrofurantoin. Overall, the findings of our study indicated the presence of virulence genes and that antimicrobial resistance in A. hydrophila isolates in this study is compatible with potentially pathogenic bacteria. This information will allow us to recognize the potential risk through circulating isolates in animal health and public health and the spread through the food chain offering subsidies for appropriate sanitary actions. | 2020 | 32461959 |
| 1954 | 2 | 0.9999 | Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area. | 2021 | 33378222 |
| 2706 | 3 | 0.9999 | Prevalence and antimicrobial resistance profile of bacterial foodborne pathogens in Nile tilapia fish (Oreochromis niloticus) at points of retail sale in Nairobi, Kenya. Proteus spp., Staphylococcus spp., Pseudeomonas spp., and pathogenic Vibrios are among the major foodborne pathogens associated with the consumption of contaminated fish. The increasing occurrence of antimicrobial resistance in these pathogens is a serious public health concern globally and therefore continuous monitoring of antimicrobial resistance of these bacteria along the food chain is crucial for for control of foodborne illnesses. The aim of this study was to assess the prevalence, antimicrobial resistance patterns, antibiotic resistance genes, and genetic diversity of bacterial foodborne pathogens recovered from fresh Nile tilapia (Oreochromis niloticus) obtained from retail markets in Nairobi, Kenya. A total of 68 O. niloticus fish with an average weight of 300.12 ± 25.66 g and body length of 23.00 ± 0.82 cm were randomly sampled from retail markets and tested for the presence of Proteus, Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae, and Vibrio parahaemolyticus. Standard culture-based microbiological and Kirby-Bauer agar disk diffusion methods were used to isolate and determine the antimicrobial resistance patterns of the isolates to 11 selected antibiotics. Statistical analysis was performed using Minitab v17.1, with p < 0.05 considered significant. The genetic diversity of the multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria was determined using 16S rRNA sequencing and phylogenetic analysis, and polymerase chain reaction (PCR) was used for detection of antibiotic resistance genes in MDR bacterial isolates. High levels of bacterial contamination were detected in fresh O. niloticus fish (44/68, 64.71%). The most prevalent bacteria were Proteus spp. (44.12%), with the rest of the bacterial species registering a prevalence of 10.29%, 4.41%, 2.94%, and 2.94% (for S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus, respectively). Antimicrobial resistance was detected in all the bacteria species and all the isolates were resistant to at least one antibiotic except cefepime (30 µg). Additionally, 86.36% of the isolates exhibited multidrug resistance, with higher multiple antibiotic resistance indices (MAR index >0.3) indicating that fresh O. niloticus fish were highly contaminated with MDR bacteria. Results of 16S rRNA sequences, BLASTn analysis, and phylogenetic trees confirmed the identified MDR bacterial isolates as Proteus mirabilis and other Proteus spp., S. aureus, P. aeruginosa, V. cholerae, and V. parahaemolyticus. PCR analysis confirmed the presence of multiple antibiotic resistance genes blaTEM-1, blaCMY-2, tetA, tetC, Sul2, dfrA7, strA, and aadA belonging to β-lactamases, tetracycline, sulfonamide, trimethoprim, and aminoglycosides in all the MDR bacterial isolates. There was strong correlation between antibiotic- resistant genes and phenotypic resistance to antibiotics of MDR bacteria. This study showed high prevalence of multidrug resistance among foodborne bacterial isolates from fresh O. niloticus fish obtained from retail markets. From this study, we conclude that fresh O. niloticus fish are a potential source of MDR bacteria, which could be a major risk to public health as a consequence of their dissemination along the human food chain. These results highlight the prevalence of antimicrobial-resistant foodborne pathogens in fish purchased from retail markets and underscore the risk associated with improper handling of fish. | 2023 | 39816642 |
| 1955 | 4 | 0.9999 | Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. BACKGROUND & OBJECTIVES: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. METHODS: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. RESULTS: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. INTERPRETATION & CONCLUSIONS: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources. | 2019 | 31219088 |
| 2677 | 5 | 0.9999 | Detection of Staphylococcus Isolates and Their Antimicrobial Resistance Profiles and Virulence Genes from Subclinical Mastitis Cattle Milk Using MALDI-TOF MS, PCR and Sequencing in Free State Province, South Africa. Staphylococcus species are amongst the bacteria that cause bovine mastitis worldwide, whereby they produce a wide range of protein toxins, virulence factors, and antimicrobial-resistant properties which are enhancing the pathogenicity of these organisms. This study aimed to detect Staphylococcus spp. from the milk of cattle with subclinical mastitis using MALDI-TOF MS and 16S rRNA PCR as well as screening for antimicrobial resistance (AMR) and virulence genes. Our results uncovered that from 166 sampled cows, only 33.13% had subclinical mastitis after initial screening, while the quarter-level prevalence was 54%. Of the 50 cultured bacterial isolates, MALDI-TOF MS and 16S rRNA PCR assay and sequencing identified S. aureus as the dominant bacteria by 76%. Furthermore, an AMR susceptibility test showed that 86% of the isolates were resistant to penicillin, followed by ciprofloxacin (80%) and cefoxitin (52%). Antimicrobial resistance and virulence genes showed that 16% of the isolates carried the mecA gene, while 52% of the isolates carried the Lg G-binding region gene, followed by coa (42%), spa (40%), hla (38%), and hlb (38%), whereas sea and bap genes were detected in 10% and 2% of the isolates, respectively. The occurrence of virulence factors and antimicrobial resistance profiles highlights the need for appropriate strategies to control the spread of these pathogens. | 2024 | 38200885 |
| 2705 | 6 | 0.9999 | Antibiogram and molecular characterization of methicillin-resistant Staphylococcus aureus recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. Municipal wastewater treatment plants (WWTPs) may serve as a reservoir for potentially pathogenic and antibiotic resistant bacteria. The discharge of improperly treated wastewater effluent may lead to the spread of these bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) which is responsible for causing pneumonia, septicaemia and skin and soft tissue infections, into the receiving surface waters. This study aimed to determine the antibiogram and virulence gene profiles of MRSA isolates recovered from treated wastewater effluent and receiving surface waters. Genetic fingerprinting of the isolates was also carried out to determine the phylogenetic relationship between the isolates and selected antibiogram profiles. Eighty MRSA isolates were obtained from treated effluent and receiving rivers of two WWTPs in Durban, KwaZulu-Natal. Antibiotic resistance was observed towards lincomycin (100%), oxacillin (98.75%), cefoxitin and penicillin (97.50%), and ampicillin (96.25%). In addition, 72.50%, 66.25%, 52.50%, 40% and 33.75% of isolates showed resistance against cefozolin, azithromycin, amoxicillin/clavulanic acid, erythromycin and vancomycin, respectively. Antibiotic resistance genes detected in the isolates tested in this study: aac(6')/aph(2″) (56.25%), ermC (62.50%), msrA (22.50%), and blaZ and tetK (70%). The frequency of virulence genes: hla and sea was 57.50%, hld was 1.25%, while lukS P/V was 0%. Pulse Field Gel Electrophoresis analysis generated 13 pulsotypes (designated A-M) showing a correlation to their respective antibiograms. Findings from this study showed the presence of potentially pathogenic, multi-drug resistant MRSA in the treated effluent and receiving surface waters. This may have detrimental effects on the health of individuals who come into contact with these water resources. | 2019 | 31463610 |
| 2704 | 7 | 0.9999 | Assessment of the Bacterial Pollution and Detection of Antibiotic Resistance Genes in Benin: Case of the Hydrographic Channel Complex Cotonou-Nokoué Lake. The study aims to document the level of contamination of the aquatic ecosystem of the Cotonou-Lake Nokoué canal hydrographic complex by multidrug-resistant bacteria and their resistance genes. For this purpose, water samples were taken from several points of the complex and from the sediments at the depth of the lake. Samples of several species of freshly caught fish products from the lake were also collected. Bacteriological analyses were carried out according to the AFNOR standard (NF U: 47-100). The identification of the different bacterial species isolated was then carried out using the API 20E gallery and specific biochemical tests. The antibiogram of the strains was performed according to the recommendations of the EUCAST. Molecular characterization of the identified strains was carried out by searching for resistance and virulence genes. The results obtained revealed the presence of several bacterial species in water samples and in sediment and intestine samples of fishery products with a predominance of Gram-negative bacilli. The resistance profile of Gram-negative bacilli showed a total resistance to metronidazole (100%). 23% of the strains were also resistant to ciprofloxacin, 41% to amoxicillin, and 60% to aztreonam. Of the Gram-positive cocci identified, 66% was resistant to vancomycin, 7.5% to ciprofloxacin, 71% to erythromycin, and 22% to tetracycline. Regarding the genes sought, bla (TEM) (46%), bla (SHV) (24%), and bla (CTX-M-15) (31%) were present in the genome of Gram-negative bacilli as resistance genes and fimH (41%) as virulence gene. As for Gram-positive cocci, the van B gene was completely absent. The van A was present at 6.25% in Staphylococcus aureus and mecA at 21.88 and 33.33%, respectively, in Staphylococcus aureus and coagulase-negative staphylococci strains. The high resistance of isolated bacterial strains is a matter of concern and calls for a rational use of antibiotics in order to avoid the transmission of antibiotic resistance from the environment to humans. | 2021 | 34285697 |
| 1362 | 8 | 0.9999 | Distribution of phenotypic and genotypic antimicrobial resistance and virulence genes in Vibrio parahaemolyticus isolated from cultivated oysters and estuarine water. A total of 594 Vibrio parahaemolyticus isolates from cultivated oysters (n = 361) and estuarine water (n = 233) were examined for antimicrobial resistance (AMR) phenotype and genotype and virulence genes. Four hundred forty isolates (74.1%) exhibited resistance to at least one antimicrobial agent and 13.5% of the isolates were multidrug-resistant strains. Most of the V. parahaemolyticus isolates were resistant to erythromycin (54.2%), followed by sulfamethoxazole (34.7%) and trimethoprim (27.9%). The most common resistance genes were qnr (77.8%), strB (27.4%) and tet(A) (22.1%), whereas blaTEM (0.8%) was rarely found. Four isolates (0.7%) from oysters (n = 2) and estuarine water (n = 2) were positive to tdh, whereas no trh-positive isolates were observed. Significantly positive associations among AMR genes were observed. The SXT elements and class 1, 2 and 3 integrons were absent in all isolates. The results indicated that V. parahaemolyticus isolates from oysters and estuarine water were potential reservoirs of resistance determinants in the environment. This increasing threat of resistant bacteria in the environment potentially affects human health. A 'One Health' approach involved in multidisciplinary collaborations must be implemented to effectively manage antimicrobial resistance. | 2020 | 32358958 |
| 2709 | 9 | 0.9998 | Isolation, genotyping and antibiotic resistance analysis in Salmonella species isolated from turkey meat in Isfahan, Iran. Salmonella is one of the mainzoonotic bacteria in the poultry industry.The knowledge about biological characteristics and antibiotic resistance pattern can help medication in poultry and human. This research aimed to study Salmonella spp contamination and its antibiotic resistance in turkey meat in Isfahan province, Iran.400 samples were collected from the turkey meat in slaughter line (May 2021 to May 2022). The conventional microbiological and biochemical tests were applied for isolation and typing of Salmonella spp. The polymerase chain reaction (PCR) was utilized for detection and typing of Salmonella strains. The antibiotic sensitivity test was achieved and all strains were evaluated for resistance genes of Act (3)-IV, Sul1 and qnrA. In microbiological examination, 32 Salmonella strains (8 %) were identified. All tested strains were positive for invA gene. By amplifying the FlicC and Prot6E genes, 28 and 4 strains had genes related to enteritidis and typhimurium, respectively. In disc diffusion test, the highest antibiotic resistance was to oxytetracycline (50 %) and the lowest was to gentamicin, amoxiclavulanic acid, cefotaxime and ceftriaxone. The results showed that 6 (18.75 %) and 10 (31.25 %) of the Salmonella spp were able to amplify Sul1 and qnrA genes, respectively. No Salmonella strain could amplify Act (3)-IV gene. 100 % of the strains carried the Sul1 and qnrA genes were resistant to sulfonamide, and enrofloxacin. Furthermore, 3 sulfonamide resistant strains (75 %) and 5 enrofloxacin resistant strains (83.33 %) were harbored Sul1 and qnrA genes, respectively. The prevalence and antibiotic resistance of Salmonella spp in turkey meat can induce health risk concern. However, the wide spectrum antibiotic resistance complicates the proper treatment of Salmonella infection in human. | 2025 | 39944349 |
| 2717 | 10 | 0.9998 | Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECV(CLSI) and ECV(NRI), respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6')-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA-tetD and tetA-tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections. | 2022 | 35326806 |
| 1956 | 11 | 0.9998 | Wounds of Companion Animals as a Habitat of Antibiotic-Resistant Bacteria That Are Potentially Harmful to Humans-Phenotypic, Proteomic and Molecular Detection. Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine. | 2024 | 38542095 |
| 2707 | 12 | 0.9998 | Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. BACKGROUND: Tilapia is a primary aquaculture fish in Thailand, but little is known about the occurrence of antimicrobial resistance (AMR) in Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae colonizing healthy tilapia intended for human consumption and the co-occurrence of these AMR bacteria in the cultivation water. METHODS: This study determined the phenotype and genotype of AMR, extended-spectrum β-lactamase (ESBL) production, and virulence factors of A. hydrophila, Salmonella spp., and V. cholerae isolated from hybrid red tilapia and cultivation water in Thailand. Standard culture methods such as USFDA's BAM or ISO procedures were used for the original isolation, with all isolates confirmed by biochemical tests, serotyping, and species-specific gene detection based on PCR. RESULTS: A total of 278 isolates consisting of 15 A. hydrophila, 188 Salmonella spp., and 75 V. cholerae isolates were retrieved from a previous study. All isolates of A. hydrophila and Salmonella isolates were resistance to at least one antimicrobial, with 26.7% and 72.3% of the isolates being multidrug resistant (MDR), respectively. All A. hydrophila isolates were resistant to ampicillin (100%), followed by oxytetracycline (26.7%), tetracycline (26.7%), trimethoprim (26.7%), and oxolinic acid (20.0%). The predominant resistance genes in A. hydrophila were mcr-3 (20.0%), followed by 13.3% of isolates having floR, qnrS, sul1, sul2, and dfrA1. Salmonella isolates also exhibited a high prevalence of resistance to ampicillin (79.3%), oxolinic acid (75.5%), oxytetracycline (71.8%), chloramphenicol (62.8%), and florfenicol (55.3%). The most common resistance genes in these Salmonella isolates were qnrS (65.4%), tetA (64.9%), bla (TEM) (63.8%), and floR (55.9%). All V. cholerae isolates were susceptible to all antimicrobials tested, while the most common resistance gene was sul1 (12.0%). One isolate of A. hydrophila was positive for int1, while all isolates of Salmonella and V. cholerae isolates were negative for integrons and int (SXT). None of the bacterial isolates in this study were producing ESBL. The occurrence of mcr-3 (20.0%) in these isolates from tilapia aquaculture may signify a serious occupational and consumer health risk given that colistin is a last resort antimicrobial for treatment of Gram-negative bacteria infections. CONCLUSIONS: Findings from this study on AMR bacteria in hybrid red tilapia suggest that aquaculture as practiced in Thailand can select for ubiquitous AMR pathogens, mobile genetic elements, and an emerging reservoir of mcr and colistin-resistant bacteria. Resistant and pathogenic bacteria, such as resistance to ampicillin and tetracycline, or MDR Salmonella circulating in aquaculture, together highlight the public health concerns and foodborne risks of zoonotic pathogens in humans from cultured freshwater fish. | 2023 | 36855429 |
| 2967 | 13 | 0.9998 | Antibiotic susceptibility and prevalence of foodborne pathogens in poultry meat in Romania. INTRODUCTION: The occurrence of pathogenic strains in poultry meat is of growing concern in Romania. Another problem found on a global level is the continuous increase of antimicrobial resistance in bacteria isolated from food. This study aimed to evaluate the prevalence of pathogenic bacteria in poultry carcasses obtained in Romania in 2012-2013 and to reveal the most prevalent patterns of antimicrobial resistance in the isolated strains. METHODOLOGY: A total of 144 broiler chicken carcasses were evaluated according to classical microbiological methods. The DNA was extracted from the bacterial colonies and the resistance genes were identified by PCR. RESULTS: In 2012, 47.2% of the samples revealed at least one of the following bacteria: Campylobacter jejuni (9.72%; n = 7), Salmonella enterica serotype Enteritidis (4.17%; n = 3), Listeria monocytogenes (15.28%; n = 11), and Escherichia coli (16.67%; n = 12). In 2013, the number of positive samples of pathogenic bacteria decreased, although Campylobacter jejuni was isolated in a higher percentage (20.8% vs. 9.72%). The percentage of multidrug-resistant (MDR) bacteria was high (23%); the most prevalent pattern included resistance to tetracycline, sulfonamides, and quinolones/fluoroquinolones. All the resistant Salmonella and E. coli strains were tested for the presence of characteristic resistance genes (Kn, bla(TEM), tetA, tetB, tetG, DfrIa, aadA1a, Sul) and revealed that these isolates represent an important reservoir in the spread of this phenomenon. CONCLUSIONS: Our findings suggest that Romania urgently needs an integrated surveillance system within the entire chain, for drug-resistant pathogens isolated from poultry meat. | 2015 | 25596569 |
| 2693 | 14 | 0.9998 | Prevalence, Antimicrobial Resistance and Toxin-Encoding Genes of Clostridioides difficile from Environmental Sources Contaminated by Feces. Clostridioides difficile (C. difficile) is the most common pathogen causing antibiotic-associated intestinal diseases in humans and some animal species, but it can also be present in various environments outside hospitals. Thus, the objective of this study was to investigate the presence and the characteristics of toxin-encoding genes and antimicrobial resistance of C. difficile isolates from different environmental sources. C. difficile was found in 32 out of 81 samples (39.50%) after selective enrichment of spore-forming bacteria and in 45 samples (55.56%) using a TaqMan-based qPCR assay. A total of 169 C. difficile isolates were recovered from those 32 C. difficile-positive environmental samples. The majority of environmental C. difficile isolates were toxigenic, with many (88.75%) positive for tcdA and tcdB. Seventy-four isolates (43.78%) were positive for binary toxins, cdtA and cdtB, and 19 isolates were non-toxigenic. All the environmental C. difficile isolates were susceptible to vancomycin and metronidazole, and most isolates were resistant to ciprofloxacin (66.86%) and clindamycin (46.15%), followed by moxifloxacin (13.02%) and tetracycline (4.73%). Seventy-five isolates (44.38%) showed resistance to at least two of the tested antimicrobials. C. difficile strains are commonly present in various environmental sources contaminated by feces and could be a potential source of community-associated C. difficile infections. | 2023 | 36671363 |
| 2700 | 15 | 0.9998 | Prevalence of Salmonella Typhimurium and Salmonella Enteritidis isolated from poultry meat: virulence and antimicrobial-resistant genes. Salmonellosis, a zoonotic disease, is one of the leading causes of foodborne illness worldwide. It is responsible for most infections caused by consumption of contaminated food. In recent years, a significant increase in the resistance of these bacteria to common antibiotics has been observed, posing a serious threat to global public health. The aim of this study was to investigate the prevalence of virulent antibiotic-resistant Salmonella spp. strains in Iranian poultry markets. A total of 440 chicken meat samples were randomly selected from meat supply and distribution facilities in Shahrekord and tested for bacteriological contamination. After culturing and isolating the strains, identification was performed using the classical bacteriological method and PCR. To determine antibiotic resistance, a disc diffusion test was performed according to the recommendations of the French Society of Microbiology. PCR was used to detect resistance and virulence genes. Only 9% of the samples were positive for Salmonella. These were Salmonella typhimurium isolates. All Salmonella typhimurium serotypes tested positive for the rfbJ, fljB, invA and fliC genes. Resistance to TET, cotrimoxazole, NA, NIT, piperacillin/tazobactam and other antibiotics was found in 26 (72.2%), 24 (66.7%), 22 (61.1%) and 21 (58.3%) isolates, respectively. The sul1, sul2 and sul3 genes were present in 20, 12 and 4 of 24 cotrimoxazole-resistant bacteria, respectively. Chloramphenicol resistance was found in six isolates, but more isolates tested positive for the floR and cat two genes. In contrast, 2 (33%) of the cat three genes, 3 (50%) of the cmlA genes and 2 (34%) of the cmlB genes were all positive. The results of this investigation showed that Salmonella typhimurium is the most common serotype of the bacterium. This means that most of the antibiotics commonly used in the livestock and poultry industries are ineffective against most Salmonella isolates, which is important for public health. | 2023 | 37322421 |
| 1953 | 16 | 0.9998 | Antibiotic-Resistant Bacteria and Resistance Genes in Isolates from Ghanaian Drinking Water Sources. The control of infectious diseases is seriously threatened by the increase in the number of microorganisms resistant to antimicrobial agents. Antibiotic-resistant bacteria have also been identified in the water environment. A field study was performed sampling drinking water sources in seven districts of southern Ghana targeting boreholes, dams, hand-dug wells, and streams during baseflow conditions. Bacteria were isolated (N = 110) from a total of 67 water samples to investigate their antimicrobial susceptibility and to determine their carriage of select antibiotic resistance genes. Bacterial identification was performed using conventional selective media methods and the analytical profile index (API) method. Antibiotic susceptibility tests were carried out using the Kirby-Bauer method. Results indicated that all water sources tested were of poor quality based on the presence of fecal indicator organisms. The most commonly occurring bacterium isolated from water was Klebsiella spp. (N = 24, 21.8%), followed by E. coli (N = 23, 20.9%). Gram-negative bacteria isolates were most commonly resistant to cefuroxime (24.5%), while the Gram-positives were most commonly resistant to meropenem (21.3%). The highest rates of bacterial resistances to more than one antibiotic were observed in Klebsiella spp. (30.0%) followed by E. coli (27.8%). PCR was used to detect the presence of a select antibiotic resistance genes in the Gram-negative isolates. The presence of bla (NDM-1), sull, tet(O), and tet(W) were observed in isolates from all water sources. In contrast, ermF was not detected in any of the Gram-negative isolates from any water source. Most (28.7%) of the resistance genes were observed in E. coli isolates. Reducing microbial contamination of the various water sources is needed to protect public health and to ensure the sustainability of this resource. This further calls for education of the citizenry. | 2022 | 36246472 |
| 2924 | 17 | 0.9998 | Molecular characterization of selected multidrug resistant Pseudomonas from water distribution systems in southwestern Nigeria. BACKGROUND: Persistence of antibiotic resistant bacteria, including multidrug resistant (MDR) pseudomonads, is an important environmental health problem associated with drinking water distribution systems (DWDS) worldwide. There is paucity of data on the molecular characteristics of antibiotic resistance genes and their mode of transfer among pseudomonads from DWDS located in resource-challenged areas such as southwestern Nigeria. METHODS: MDR pseudomonads (n = 22) were selected from a panel of 296 different strains that were isolated from treated and untreated water in six DWDS located across southwest Nigeria. Primarily, the isolated pseudomonads strains were identified by 16S rDNA sequencing and antibiotic-resistance testing was completed using agar breakpoints assays. The final panel of strains of resistant to more than three classes of antibiotics (i.e. MDR), were further characterized by PCR genotyping, Sanger sequencing, and plasmid profiling. RESULTS: Pseudomonad resistance to gentamicin and streptomycin ranged from 22.7 to 54.6 % while resistance to tetracycline, ceftiofur and sulphamethoxazole ranged from 40.9 to 77.3 %. The most commonly detected antibiotic resistance genes were tet(A) (31.8 % of isolates), sul1 (31.8 %), bla TEM (40.9 %) and aph(3″) (c) (36.4 %). Class 1 integron sequences were evident in 27.3 % of isolates and they harbored genes encoding resistance to aminoglycosides (aadA2, aadA1), trimethoprim (dfrA15, dfr7) and sulphonamide (sul1) while the plasmid ranged between 22 and 130 kb. CONCLUSIONS: Pseudomonas spp, isolated from these DWDS possess resistance genes and factors that are of public and environmental health significance. Therefore, has the potential of contributing to the global scourge of resistance genes transfer in human, animals and environments, thereby, useful in the epidemiology of antimicrobial resistance. | 2015 | 26328550 |
| 2931 | 18 | 0.9998 | Molecular characterization of antibiotic resistance in Escherichia coli strains from a dairy cattle farm and its surroundings. BACKGROUND: This study describes the phenotypic and genotypic characteristics of 78 genetically different Escherichia coli recovered from air and exudate samples of a dairy cattle farm and its surroundings in Spain, in order to gain insight into the flow of antimicrobial resistance through the environment and food supply. RESULTS: Antimicrobial resistance was detected in 21.8% of the 78 E. coli isolates analyzed (resistance for at least one of the 14 agents tested). The highest resistance rates were recorded for ampicillin, nalidixic acid, trimethoprim/sulfamethoxazole and tetracycline. The resistance genes detected were as follows (antibiotic (number of resistant strains), gene (number of strains)): ampicillin (9), bla(TEM-1) (6); tetracycline (15), tet(A) (7), tet(B) (4), tet(A) + tet(B) (1); chloramphenicol (5), cmlA (2), floR (2); trimethoprim/sulfamethoxazole (10), sul2 (4), sul1 (3), sul3 (2), sul1 + sul2 (1); gentamicin-tobramycin (1), ant(2″) (1). About 14% of strains showed a multidrug-resistant phenotype and, of them, seven strains carried class 1 integrons containing predominantly the dfrA1-aadA1 array. One multidrug-resistant strain was found in both inside and outside air, suggesting that the airborne spread of multidrug-resistant bacteria from the animal housing facilities to the surroundings is feasible. CONCLUSIONS: This study gives a genetic background of the antimicrobial resistance problem in a dairy cattle farm and shows that air can act as a source for dissemination of antimicrobial-resistant bacteria. © 2016 Society of Chemical Industry. | 2017 | 26969806 |
| 2702 | 19 | 0.9998 | Assessment of the presence of multidrug-resistant Escherichia coli, Salmonella and Staphylococcus in chicken meat, eggs and faeces in Mymensingh division of Bangladesh. The emergence of bacteria that is resistant to several drugs of clinical importance poses a threat to successful treatment, a phenomenon known as multidrug resistance that affects diverse classes of antibiotics. The purpose of this study was to evaluate the prevalence of multidrug-resistant Escherichia coli, Salmonella spp. and Staphylococcus aureus in chicken egg, meat and faeces from four districts of Bangladesh. A total of 120 chicken samples were collected from different poultry farms. Conventional culture and molecular detection methods were used for identification of bacterial isolates from the collected samples followed by antibiotic susceptibility test through the disc diffusion method, finally antibiotic resistant genes were detected by PCR. E. coli, Salmonella spp. and Staphylococcus aureus were detected in meat, egg and faecal samples. Antimicrobial susceptibility results revealed isolates from faeces were 100 % resistant to amoxicillin, while all S. aureus and Salmonella sp. from faeces were resistant to doxycycline, tetracycline and erythromycin. Salmonella spp. isolates from eggs indicated 100 % resistance to erythromycin, amoxycillin, while E. coli were 100 % resistant to erythromycin. E. coli and S. aureus from meat were 100 % resistant to amoxicillin and erythromycin. However, Salmonella spp. from eggs were 100 % susceptible to doxycycline, gentamicin, levofloxacin and tetracycline. The mecA and aac(3)-IV genes were only found in S. aureus and E. coli, respectively. The Sul1, tetB, and aadA1 were highest in Salmonella spp. and S. aureus, while the sul1, tetA and bla (SHV) were higher in E. coli. Isolates from all samples were multidrug resistant. These findings indicate a high risk of transmission of resistance genes from microbial contamination to food of animal origin. The study emphasizes the need for effective biosecurity measures, responsible antibiotic use, and strict regulations in poultry production to prevent the spread of antibiotic resistance. | 2024 | 39281621 |