EHEC, EPEC, and ETEC strains and their antibiotic resistance in drinking and tap water samples. - Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
269801.0000EHEC, EPEC, and ETEC strains and their antibiotic resistance in drinking and tap water samples. BACKGROUND: Investigating of the presence of Enterohemorrhagic E. coli (EHEC), Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC) strains and their antibiotic resistance in natural spring waters and tap waters from two university hospitals, in Istanbul. METHODS: E. coli strains isolated from water samples were identified by polymerase chain reaction (PCR) method using stx-1, stx-2, eaeA genes specific for EHEC; eaeA, bfp genes specific for EPEC and lt, st genes specific for ETEC. Antibiotic susceptibility tests were done according to the Kirby-Bauer method using The Clinical and Laboratory Standards Institute (CLSI) criteria. RESULTS: E. coli strains were isolated from only five (2.7%) out of 184 water samples. Only one of the 36 E. coli strains isolated from these five water samples was found to be extended spectrum beta lactamase (ESBL) positive. According to PCR, ten E. coli strains isolated from one drinking water were identified as ETEC. Other than E. coli strains, coliforms and non-fermentative Gram negative bacteria were also isolated from waters. It was shown that 60 (81.1%) of these 74 strains isolated, other than E. coli, were found to be multiple resistant. CONCLUSIONS: Contrary to our expectations, it has been shown that natural spring waters (drinking waters) can be much more contaminated with fecal bacteria when compared with tap waters. The presence of pathogenic E. coli strains and antibiotic resistant Gram negative bacteria especially in drinking waters emphasize the importance of these types of studies.201525807645
296610.9999Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. BACKGROUND: Curbing the potential negative impact of antibiotic resistance, one of our era's growing global public health crises, requires regular monitoring of the resistance situations, including the reservoir of resistance genes. Wild birds, a possible bioindicator of antibiotic resistance, have been suggested to play a role in the dissemination of antibiotic-resistant bacteria. Therefore, this study was conducted with the objective of determining the phenotypic and genotypic antibiotic resistance profiles of 100 Escherichia coli isolates of gull and pigeon origin by using the Kirby-Bauer disk diffusion method and PCR. Furthermore, the genetic relationships of the isolates were determined by RAPD-PCR. RESULTS: Phenotypic antibiotic susceptibility testing revealed that 63% (63/100) and 29% (29/100) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. With the exception of cephalothin, to which the E. coli isolates were 100% susceptible, tetracycline (52%), kanamycin (38%), streptomycin (37%), ampicillin (28%), chloramphenicol (21%), trimethoprim/sulfamethoxazole (19%), gentamicin (13%), enrofloxacin (12%) and ciprofloxacin (12%) resistances were detected at varying degrees. Among the investigated resistance genes, tet(B) (66%), tet(A) (63%), aphA1 (48%), sul3 (34%), sul2 (26%), strA/strB (24%) and sul1 (16%) were detected. Regarding the genetic diversity of the isolates, the RAPD-PCR-based dendrograms divided both pigeon and gull isolates into five different clusters based on a 70% similarity threshold. Dendrogram analysis revealed 47-100% similarities among pigeon-origin strains and 40-100% similarities among gull-origin E.coli strains. CONCLUSIONS: This study revealed that gulls and pigeons carry MDR E. coli isolates, which may pose a risk to animal and human health by contaminating the environment with their feces. However, a large-scale epidemiological study investigating the genetic relationship of the strains from a "one health" point of view is warranted to determine the possible transmission patterns of antibiotic-resistant bacteria between wild birds, the environment, humans, and other hosts. Video Abstract.202438191447
269720.9999Infiltration of hidden antimicrobial resistance among healthy people in a Japanese community. BACKGROUND: Under non-antimicrobial selective pressure, antimicrobial-resistant bacteria do not easily become dominant in the microbiota. Furthermore, their low levels prevent detection by isolation, resulting in an underestimation of the prevalence of antimicrobial-resistant bacteria. OBJECTIVES: We evaluated the infiltration of antimicrobial-resistant bacteria and their related β-lactamase genes among healthy people in non-clinical settings. METHODS: Cephalosporin- and fluoroquinolone-resistant Escherichia coli and bla genes were quantified in 217 faecal samples from healthy people in non-clinical settings in Japan. E. coli colonies grown on deoxycholate hydrogen sulphide-lactose (DHL) agar, with and without antimicrobials (cefotaxime and ciprofloxacin), were quantified, and E. coli isolates were analysed for their susceptibility to antimicrobials and the presence of bla genes. DNA extracted from faecal samples was used to quantify bla genes using quantitative PCR (qPCR). RESULTS: The isolation rates of cefotaxime- and ciprofloxacin-resistant E. coli were 6.9% and 12.4%, respectively, using agars without antimicrobials, and 12.0% and 24.4%, respectively, using agars with antimicrobials. For samples from which cefotaxime- and ciprofloxacin-resistant E. coli were isolated only using agars with antimicrobials, the ratios of cfu on DHL agars with and without antimicrobials were below -2 log. E. coli harbouring bla genes were isolated from 35.0% of the faecal samples using agars, and bla genes were detected in 65.0% of faecal DNA samples using qPCR. CONCLUSIONS: Among people carrying cefotaxime- and ciprofloxacin-resistant E. coli in non-clinical settings, cefotaxime- and ciprofloxacin-resistant E. coli were not dominant in half of the subjects. These individuals may play a role as reservoirs of antimicrobial-resistant bacteria.202235350135
162130.9999Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Wild animals are increasingly reported as carriers of antibiotic-resistant and pathogenic bacteria including Enterobacteriaceae. However, the role of free-living birds as reservoirs for potentially dangerous microbes is not yet thoroughly understood. In our work, we examined Escherichia coli strains from wild birds in Poland in relation to their antimicrobial agents susceptibility, virulence and phylogenetic affiliation. Identification of E. coli was performed using MALDI-TOF mass spectrometry. The antibiotic susceptibility of the isolates was determined by the broth microdilution method, and resistance and virulence genes were detected by PCR. E. coli bacteria were isolated from 32 of 34 samples. The strains were most often classified into phylogenetic groups B1 (50%) and A (25%). Resistance to tetracycline (50%), ciprofloxacin (46.8%), gentamicin (34.3%) and ampicillin (28.1%) was most frequently reported, and as many as 31.2% of E. coli isolates exhibited a multidrug resistance phenotype. Among resistance genes, sul2 (31.2% of isolates) and bla(TEM) (28.1%) were identified most frequently, while irp-2 (31.2%) and ompT (28.1%) were the most common virulence-associated genes. Five strains were included in the APEC group. The study indicates that wild birds can be carriers of potentially dangerous E. coli strains and vectors for the spread of resistant bacteria and resistance determinants in the environment.202134451523
298040.9999Risk of sharing resistant bacteria and/or resistance elements between dogs and their owners. BACKGROUND: The indiscriminate use and the similarity of prescribed antibiotics especially beta-lactams in human and small animal medicine, along with the close communication between pets and humans, increases the risk of the transfer of antibiotic-resistant bacteria and/or resistance elements especially integrons, between them. Therefore, we aimed to compare the frequencies of extended spectrum beta-lactamase (ESBL)-producing strains, major ESBL genes, classes 1 and 2 integrons, and antibiotic resistance patterns of fecal Escherichia coli (E. coli) isolates from dogs and their owners. METHODS: The present study was conducted on 144 commensal E. coli isolates from the feces of 28 healthy dog-owner pairs and 16 healthy humans who did not own pets. Phenotypic confirmatory test was used to identify the frequencies of ESBL-producing E. coli. Frequencies of bla(CTX-M), bla(SHV), and bla(TEM) genes, and also classes 1 and 2 integrons were determined by polymerase chain reaction. Resistance against 16 conventional antibiotics was determined by disk diffusion technique. RESULTS: ESBL-production status was similar between the E. coli isolates of 71.4% of dog-owner pairs. The E. coli isolates of 75, 60.7, and 85.7% of dog-owner pairs were similar in terms of the presence or absence of bla(CTX-M), bla(TEM), and bla(SHV) genes, respectively. The presence or absence of class 1 and class 2 integrons was the same in E. coli isolates of 57.1% of dog-owner pairs. Prevalence of resistance to chloramphenicol and tetracycline was significantly higher in E. coli isolates of dogs than owners, but for other 10 (83.3%) tested antibiotics, no statistically significant difference was found in prevalence of antibiotic resistance between dogs and owners isolates. Furthermore, the antibiotic-resistance profile was the same in the E. coli isolates of 14.3% of dog-owner pairs. CONCLUSIONS: The results of current research highlight the seriousness of the drug-resistance problem and the need to prevent further increases and spread of antibiotic-resistance to reduce treatment failure. Moreover, relatively similar characteristics of the E. coli isolates of dogs and their owners can show the risk of sharing resistant bacteria and/or resistance elements between them.202235624502
101550.9998Antimicrobial-resistant and extended-spectrum β-lactamase-producing Escherichia coli in raw cow's milk. The occurrence of antimicrobial-resistant bacteria is an important public health issue. The aim of this study was the monitoring of resistant Escherichia coli in raw cow's milk with a focus on the detection of extended-spectrum β-lactamase (ESBL)-producing strains. In total, 263 samples of raw milk from 40 farms were collected and investigated in 2010 to 2013 in the Czech Republic. Detection of E. coli was performed and evaluated according to ISO 16649-2, and antibiotic resistance was screened by the disk diffusion method. The presence of E. coli was detected in 243 (92.4%) samples. In total, 270 isolates were obtained. Resistance to β-lactam (31.8%) and tetracycline (13.0%) antibiotics was detected most often and also multiresistant strains (5.5%) were observed. E. coli isolates found to be resistant to β-lactam, tetracycline, and quinolone antibiotics were assayed by PCR to detect selected genes encoding those resistance mechanisms. In isolates in which any bla genes were detected, a double-disk synergy test was performed. ESBL production was confirmed in 2 (0.7%) isolates. The genetic analysis identified the presence of the blaCTX-M gene and other resistance genes (tet(B) and qnrB). Both ESBL-positive isolates originated from the same farm and had an identical pulsed-field gel electrophoresis profile. The findings of our study indicate that milk can be a reservoir of bacteria carrying resistance genes with a potential for spreading through the food chain.201525581180
162060.9998A survey of antimicrobial-resistant Escherichia coli prevalence in wild mammals in Japan using antimicrobial-containing media. The emergence and spread of antimicrobial-resistant bacteria and resistance genes pose serious human and animal health concerns. Therefore, to control antimicrobial-resistant bacteria in the environment, the status of antimicrobial resistance of Escherichia coli in a variety of wild mammals and their prevalence were examined using antimicrobial-containing media. In total, 750 isolates were obtained from 274/366 (74.9%) wild mammals, and antimicrobial-resistant E. coli was detected in 37/750 isolates (4.9%) from 7 animal species (26/366 [7.1%] individuals). Using antimicrobial-containing media, 14 cefotaxime (CTX)- and 35 nalidixic acid-resistant isolates were obtained from 5 (1.4%) and 17 (4.6%) individuals, respectively. CTX-resistant isolates carried bla(CTX-M-27), bla(CTX-M-55), bla(CTX-M-1), and bla(CMY-2), with multiple resistance genes. Fluoroquinolone-resistant isolates had multiple mutations in the quinolone-resistance determining regions of gyrA and parC or qnrB19. Most resistant isolates exhibited resistance to multiple antimicrobials. The prevalence of antimicrobial-resistant bacteria observed in wild mammals was low; however, it is essential to elucidate the causative factors related to the low prevalence and transmission route of antimicrobial-resistant bacteria/resistance genes released from human activities to wild animals and prevent an increase in their frequency.202236310042
297070.9998Plasmid-mediated quinolone resistance in Escherichia coli isolates from commercial broiler chickens in Semnan, Iran. BACKGROUND AND OBJECTIVES: Antibiotic resistance within the poultry sector presents a considerable health concern due to treatment inefficacy and resistance transmission to humans and the environment. The investigation of plasmid-mediated quinolone resistance (PMQR) in Escherichia coli, acknowledged for its role in advancing resistance, remains inadequately studied in Iranian poultry. This study aimed to evaluate PMQR gene prevalence as well as to determine correlation between resistance phenotype and genotype in E. coli obtained from poultry colibacillosis. MATERIALS AND METHODS: A collection of 100 E. coli isolates from the viscera of broilers suspected to colibacillosis was assessed. Using the Kirby-Bauer disk diffusion method, antimicrobial susceptibility tests were conducted for ofloxacin, nalidixic acid, levofloxacin, ciprofloxacin, and ampicillin. Additionally, PCR was employed to screen for qnrS, qnrB, and aac(6)Ib-cr genes. RESULTS: Among the analyzed E. coli isolates, 51% demonstrated resistance to at least one of the tested antibiotics, with 17% exhibiting resistance to four different antibiotics. Nalidixic acid displayed the highest resistance rate at 48%, while ampicillin had the lowest at 16%. PMQR genes were detected in 28% of the E. coli isolates, with aac(6')-Ib-cr being the most prevalent at 14%, followed by qnrB in 13%, and qnrS in 7%. CONCLUSION: The study underscores the vital need for careful antibiotic usage in poultry to curb the emergence of antibiotic-resistant bacteria. The results illuminate the prevalence of PMQR genes and their association with resistance trends in Iranian poultry, forming a pivotal basis for forthcoming approaches to combat antibiotic resistance within the poultry sector.202438854977
195580.9998Phenotypic & genotypic study of antimicrobial profile of bacteria isolates from environmental samples. BACKGROUND & OBJECTIVES: The resistance to antibiotics in pathogenic bacteria has increased at an alarming rate in recent years due to the indiscriminate use of antibiotics in healthcare, livestock and aquaculture. In this context, it is necessary to monitor the antibiotic resistance patterns of bacteria isolated from the environmental samples. This study was conducted to determine the phenotypic and genotypic profile of antimicrobial resistance in Gram-negative bacteria isolated from environmental samples. METHODS: Two hundred and fifty samples were collected from different sources, viz. fish and fishery products (99), livestock wastes (81) and aquaculture systems (70), in and around Mangaluru, India. Isolation, identification and antimicrobial profiling were carried out as per standard protocols. The isolates were screened for the presence of resistance genes using PCR. RESULTS: A total of 519 Gram-negative bacteria comprising Escherichia coli (116), Salmonella spp. (14), Vibrio spp. (258), Pseudomonas spp. (56), Citrobacter spp. (26) and Proteus spp. (49) were isolated and characterized from 250 samples obtained from different sources. A total of 12 antibiotics were checked for their effectiveness against the isolates. While 31.6 per cent of the isolates were sensitive to all the antibiotics used, 68.4 per cent of the isolates showed resistance to at least one of the antibiotics used. One-third of the isolates showed multidrug resistance. Maximum resistance was observed for ampicillin (43.4%), followed by nitrofurantoin (20.8%). Least resistance was seen for carbapenems and chloramphenicol. PCR profiling of the resistant isolates confirmed the presence of resistance genes corresponding to their antibiotic profile. INTERPRETATION & CONCLUSIONS: This study results showed high rate of occurrence of antimicrobial resistance and their determinants in Gram-negative bacteria isolated from different environmental sources.201931219088
115190.9998Genomic Analysis of Third Generation Cephalosporin Resistant Escherichia coli from Dairy Cow Manure. The production of extended-spectrum β-lactamases (ESBLs) conferring resistance to new derivatives of β-lactams is a major public health threat if present in pathogenic Gram-negative bacteria. The objective of this study was to characterize ceftiofur (TIO)- or cefotaxime (FOX)-resistant Escherichia coli isolated from dairy cow manure. Twenty-four manure samples were collected from four farms and incubated under anaerobic conditions for 20 weeks at 4 °C or at 25 °C. A total of 37 TIO- or FOX-resistant E. coli were isolated from two of the four farms to determine their susceptibility to 14 antibiotics. Among the 37 resistant E. coli, 10 different serotypes were identified, with O8:H1 being the predominant serotype (n = 17). Five isolates belonged to each of serotypes O9:NM and O153:H42, respectively. All 37 cephalosporin resistant isolates were multi-resistant with the most prevalent resistance spectrum being amoxicillin-clavulanic acid-ampicillin-cefoxitin-ceftiofur-ceftriaxone-chloramphenicol-streptomycin-sulfisoxazole-tetracycline-trimethoprim-sulfamethoxazole. The genomes of 18 selected isolates were then sequenced and compared to 14 selected human pathogenic E. coli reference genomes obtained from public repositories using different bioinformatics approaches. As expected, all 18 sequenced isolates carried at least one β-lactamase bla gene: TEM-1, TEM-81, CTX-M115, CTX-M15, OXA-1, or CMY-2. Several other antibiotic resistance genes (ARGs) and virulence determinants were detected in the sequenced isolates and all of them harbored antimicrobial resistance plasmids belonging to classic Inc groups. Our results confirm the presence of diverse ESBL producing E. coli isolates in dairy cow manure stored for a short period of time. Such manure might constitute a reservoir of resistance and virulence genes for other bacteria that share the same environment.201729149094
2973100.9998An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. BACKGROUND: Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS: The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS: Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored bla(CTX-M) genes, with bla(CTX-M-15) being the most prevalent. CONCLUSIONS: Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.201830041652
2981110.9998Investigation of plasmid-mediated resistance in E. coli isolated from healthy and diarrheic sheep and goats. Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.202032127753
2978120.9998Distribution of Antibiotic Resistance Genes among the Phylogroups of Escherichia coli in Diarrheic Calves and Chickens Affected by Colibacillosis in Tehran, Iran. Antibiotic resistance occurs in the endogenous flora of exposed population in addition to pathogenic bacteria. This study was conducted to evaluate the distribution of antibiotic resistance genes among 63 isolates of Escherichia coli of Escherichia coli (E. coli) in diarrheic calves and poultry. According to the results, B1 and B2 were the most prevalent phylogroups of E. coli in calves and poultry carcasses, respectively. Antimicrobial resistance was observed in 76% of the isolates, and 62% of the strains were multi-drug resistant. Antibiotic resistance in E. coli strains obtained from calves strains was significantly higher than those obtained from poultries. Additionally, the strains of B1 and D phylogroups had the highest and lowest antimicrobial resistance, respectively. At least one encoding gene for integrone was detected in 23 strains (36.5%) and Class I integron had the highest prevalence. Accordingly, this study gave baseline information on the magnitude of the resistance problem and its genetic background in E. coli from domesticated animals of the Tehran, Iran. Moreover, the power of oligonucleotide array technology in the discrimination of different genotypes during a short time was confirmed in this study.201830242804
2974130.9998Diversity of Virulence Genes in Multidrug Resistant Escherichia coli from a Hospital in Western China. BACKGROUND: Escherichia coli strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal E. coli can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize E. coli strains from a hospital in western China to determine their virulence and antimicrobial resistance potential. METHODS: A total of 97 E. coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study. RESULTS: The frequency of occurrence of the virulence genes fimC, irp2, fimH, fyuA, lpfA, hlyA, sat, and cnf1 in the E. coli isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all E. coli isolates were multidrug resistant and had a high degree of antimicrobial resistance. CONCLUSION: These results indicate a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug resistant E. coli isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals.201931824179
2326140.9998Frequency of Antimicrobial Resistance and Class 1 and 2 Integrons in Escherichia Coli Strains Isolated from Urinary Tract Infections. Resistance to antimicrobial compounds in E. coli strains is increasing. Integrons are mobile genetic elements that lead to the spread and transfer of antibiotic resistance genes in bacteria. The aim of the present study was to determine the frequency of class 1 and 2 integrons as well as the antimicrobial resistance in E.coli strains isolated from urinary tract infections (UTIs). A total of 100 clinical isolates of uropathogenic E. coli (UPEC) were collected from patients having UTIs. These strains were identified using biochemical tests. The antibiotic susceptibility patterns of the isolated bacteria were determined in accordance with the standard method recommended by the clinical and laboratory standards institute (CLSI). The presence of class 1 and 2 integrons was determined by PCR method. The most frequent antibiotic resistance was observed to ampicillin (72%), co-trimoxazole (66%), and nalidixic acid (62%). The highest sensitivity was seen to amikacine (11%) and gentamicin (20%). The multi-drug resistance (MDR) was observed in 80% of E. coli isolates. 70% and 3% of E. coli isolate possessed class 1 and 2 integrons, respectively. Our data suggest that the antimicrobial resistance to some antibiotics as well as the frequency of class 1 and 2 integrons is very high in E. coli strains. Moreover, class 1 integrons are correlated with resistance to ampicillin, gentamicin, ciprofloxacin, co-trimoxazole, and nalidixic acid. Therefore, it is very important to monitor integron-induced drug resistance, especially class 1 integron, in order to control the urinary tract infections causing by MDR E.coli strains.202033680029
2972150.9998Genetic characterisation of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. OBJECTIVES: Antimicrobial resistance in Salmonella serotypes has been reported. Integrons play an important role in the dissemination of antimicrobial resistance genes in bacteria. Scarce literature is available on the identification of integrons in Salmonella isolated from broiler chickens. In this study, antimicrobial susceptibility testing and characterisation of class 1 integrons among multidrug-resistant (MDR) Salmonella enterica serotypes in broiler chicken farms in Egypt were performed. METHODS: Antimicrobial susceptibility was determined by the disk diffusion method. PCR was performed to detect antimicrobial resistance genes and class 1 integrons in the tested Salmonella serotypes. Gene sequencing of the variable region of a class 1 integron was performed. RESULTS: Salmonella spp. were detected in 26 (13.5%) of 192 broiler samples, with Salmonella Enteritidis being the most frequently detected serotype, followed by Salmonella Kentucky and Salmonella Typhimurium and other serotypes. A very high resistance rate was observed to trimethoprim/sulfamethoxazole (100%), whilst a low resistance rate was observed to cefuroxime (57.7%). MDR S. enterica isolates displayed resistance to ciprofloxacin and azithromycin. Class 1 integrons were detected in 20 (76.9%) of the 26 Salmonella isolates. A high prevalence of class 1 integrons, as the first recorded percentage in the literature, associated with MDR Salmonella isolates was observed. CONCLUSIONS: Antimicrobial resistance rates in Salmonella serotypes from broiler chicken farms were alarming, especially for ciprofloxacin and azithromycin. Thus, another therapeutic strategy other than antimicrobials is recommended to prevent outbreaks of MDR Salmonella.201829684574
2691160.9998Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Bacteria isolated from companion animals are attracting concerns in a view of public health including antimicrobial resistance and biofilm development, both contributing to difficult-to-treat infections. The purpose of this study was to evaluate the minimum inhibitory concentrations (MIC) of 18 antibiotics in Escherichia coli isolated from two groups of dogs (healthy and diarrheic). Isolates were classified into phylogroups, examined for the presence of resistance genes and biofilm-formation capacity. In healthy dogs, phylogenetic analysis showed that 47.37% and 34.22% of E. coli isolates belonged to commensal groups (A; B1) in contrast to diarrheic dogs; 42.2% of isolates were identified as the B2 phylogroup, and these E. coli bacteria formed a stronger biofilm. The results of healthy dogs showed higher MIC levels for tetracycline (32 mg/L), ampicillin (64 mg/L), ciprofloxacin (8 mg/L) and trimethoprim-sulphonamide (8 mg/L) compared to clinical breakpoints. The most detected gene encoding plasmid-mediated resistance to quinolones in the healthy group was qnrB, and in dogs with diarrhea, qnrS. The resistance genes were more frequently detected in healthy dogs. The presence of the integron int1 and the transposon tn3 increases the possibility of transfer of many different cassette-associated antibiotic-resistance genes. These results suggest that dogs could be a potential reservoir of resistance genes.202134205399
2142170.9998Resistance to β-lactams and distribution of β-lactam resistance genes in subgingival microbiota from Spanish patients with periodontitis. OBJECTIVES: The aim of this study was to analyze the distribution of β-lactamase genes and the multidrug resistance profiles in β-lactam-resistant subgingival bacteria from patients with periodontitis. MATERIALS AND METHODS: Subgingival samples were obtained from 130 Spanish patients with generalized periodontitis stage III or IV. Samples were grown on agar plates with amoxicillin or cefotaxime and incubated in anaerobic and microaerophilic conditions. Isolates were identified to the species level by the sequencing of their 16S rRNA gene. A screening for the following β-lactamase genes was performed by the polymerase chain reaction (PCR) technique: bla(TEM), bla(SHV), bla(CTX-M), bla(CfxA), bla(CepA), bla(CblA), and bla(ampC). Additionally, multidrug resistance to tetracycline, chloramphenicol, streptomycin, erythromycin, and kanamycin was assessed, growing the isolates on agar plates with breakpoint concentrations of each antimicrobial. RESULTS: β-lactam-resistant isolates were found in 83% of the patients. Seven hundred and thirty-seven isolates from 35 different genera were obtained, with Prevotella and Streptococcus being the most identified genera. bla(CfxA) was the gene most detected, being observed in 24.8% of the isolates, followed by bla(TEM) (12.9%). Most of the isolates (81.3%) were multidrug-resistant. CONCLUSIONS: This study shows that β-lactam resistance is widespread among Spanish patients with periodontitis. Furthermore, it suggests that the subgingival commensal microbiota might be a reservoir of multidrug resistance and β-lactamase genes. CLINICAL RELEVANCE: Most of the samples yielded β-lactam-resistant isolates, and 4 different groups of bla genes were detected among the isolates. Most of the isolates were also multidrug-resistant. The results show that, although β-lactams may still be effective, their future might be hindered by the presence of β-lactam-resistant bacteria and the presence of transferable bla genes.202032495224
2335180.9998Isolation, identification, molecular typing, and drug resistance of Escherichia coli from infected cattle and sheep in Xinjiang, China. BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.202336977209
2330190.9998Antimicrobial and disinfectant resistance of Escherichia coli isolated from giant pandas. AIMS: The study aims to demonstrate the antimicrobial and disinfectant resistance phenotypes and genotypes of Escherichia coli isolates obtained from giant pandas (Ailuropoda melanoleuca). METHODS AND RESULTS: Antimicrobial testing was performed according to the standard disk diffusion method. The minimal inhibitory concentrations (MICs) of disinfectants were determined using the agar dilution method. All isolates were screened for the presence of antimicrobial and disinfectant resistance genes and further analysed for genetic relatedness by pulse-field gel electrophoresis (PFGE). Results showed that 46·6% of the isolates were resistant to at least one antimicrobial. Escherichia coli isolates showed resistance to fewer antimicrobials as panda age increased. Among antimicrobial-resistant E. coli isolates, the antimicrobial resistance genes blaCTX-M (88·2%) and sul1 (92·3%) were most prevalent. The disinfectant resistance genes emrE, ydgE/ydgF, mdfA and sugE(c) were commonly present (68·2-98·9%), whereas qac and sugE(p) were relatively less prevalent (0-21·3%). The frequencies of resistance genes tended to be higher in E. coli isolated in December than in July, and PFGE profiles were also more diverse in isolates in December. The qacEΔ1 and sugE(p) genes were higher in adolescent pandas than in any other age groups. PFGE revealed that antimicrobial resistance correlated well with sampling time and habitat. CONCLUSIONS: This study demonstrated that antimicrobial and disinfectant resistance was common in giant panda-derived E. coli, and the antimicrobial resistance was associated with sampling time and habitat. Escherichia coli could serve as a critical vector in spreading disinfectant and antimicrobial resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study that demonstrated the phenotypic and genetic characterizations of antimicrobial and disinfectant resistance in E. coli isolates from more than 60 giant pandas. Frequent transfer of pandas to other cages may lead to the dissemination of antimicrobial resistance. The study highlights the need for regularly monitoring the antimicrobial and disinfectant resistance in bacteria from giant pandas.201525846200